多标签图像分类任务的评价方法-mAP
http://blog.sina.com.cn/s/blog_9db078090102whzw.html
多标签图像分类(Multi-label Image Classification)任务中图片的标签不止一个,因此评价不能用普通单标签图像分类的标准,即mean accuracy,该任务采用的是和信息检索中类似的方法—mAP(mean Average Precision)。mAP虽然字面意思和mean accuracy看起来差不多,但是计算方法要繁琐得多,以下是mAP的计算方法:
首先用训练好的模型得到所有测试样本的confidence score,每一类(如car)的confidence score保存到一个文件中(如comp1_cls_test_car.txt)。假设共有20个测试样本,每个的id,confidence score和ground truth label如下:
接下来对confidence score排序,得到:
这张表很重要,接下来的precision和recall都是依照这个表计算的
然后计算precision和recall,这两个标准的定义如下:
上图比较直观,圆圈内(true positives + false positives)是我们选出的元素,它对应于分类任务中我们取出的结果,比如对测试样本在训练好的car模型上分类,我们想得到top-5的结果,即:
在这个例子中,true positives就是指第4和第2张图片,false positives就是指第13,19,6张图片。方框内圆圈外的元素(false negatives和true negatives)是相对于方框内的元素而言,在这个例子中,是指confidence score排在top-5之外的元素,即:
其中,false negatives是指第9,16,7,20张图片,true negatives是指第1,18,5,15,10,17,12,14,8,11,3张图片。
那么,这个例子中Precision=2/5=40%,意思是对于car这一类别,我们选定了5个样本,其中正确的有2个,即准确率为40%;Recall=2/6=30%,意思是在所有测试样本中,共有6个car,但是因为我们只召回了2个,所以召回率为30%。
实际多类别分类任务中,我们通常不满足只通过top-5来衡量一个模型的好坏,而是需要知道从top-1到top-N(N是所有测试样本个数,本文中为20)对应的precision和recall。显然随着我们选定的样本越来也多,recall一定会越来越高,而precision整体上会呈下降趋势。把recall当成横坐标,precision当成纵坐标,即可得到常用的precision-recall曲线。这个例子的precision-recall曲线如下:
接下来说说AP的计算,此处参考的是PASCAL VOC CHALLENGE的计算方法。首先设定一组阈值,[0, 0.1, 0.2, …, 1]。然后对于recall大于每一个阈值(比如recall>0.3),我们都会得到一个对应的最大precision。这样,我们就计算出了11个precision。AP即为这11个precision的平均值。这种方法英文叫做11-point interpolated average precision。
当然PASCAL VOC CHALLENGE自2010年后就换了另一种计算方法。新的计算方法假设这N个样本中有M个正例,那么我们会得到M个recall值(1/M, 2/M, ..., M/M),对于每个recall值r,我们可以计算出对应(r' > r)的最大precision,然后对这M个precision值取平均即得到最后的AP值。计算方法如下:
相应的Precision-Recall曲线(这条曲线是单调递减的)如下:
AP衡量的是学出来的模型在每个类别上的好坏,mAP衡量的是学出的模型在所有类别上的好坏,得到AP后mAP的计算就变得很简单了,就是取所有AP的平均值。
多标签图像分类任务的评价方法-mAP的更多相关文章
- multi-label image classification:多标签图像分类总结
多标签图像分类总结 目录 1.简介 2.现有数据集和评价指标 3.学习算法 4.总结(现在存在的问题,研究发展的方向) 简介 传统监督学习主要是单标签学习,而现实生活中目标样本往往比较复杂,具有多个语 ...
- 目标检测的评价标准mAP, Precision, Recall, Accuracy
目录 metrics 评价方法 TP , FP , TN , FN 概念 计算流程 Accuracy , Precision ,Recall Average Precision PR曲线 AP计算 A ...
- 机器学习评价方法 - Recall & Precision
刚开始看这方面论文的时候对于各种评价方法特别困惑,还总是记混,不完全统计下,备忘. 关于召回率和精确率,假设二分类问题,正样本为x,负样本为o: 准确率存在的问题是当正负样本数量不均衡的时候: 精心设 ...
- jquery原型方法map的使用和源码分析
原型方法map跟each类似调用的是同名静态方法,只不过返回来的数据必须经过另一个原型方法pushStack方法处理之后才返回,源码如下: map: function( callback ) { re ...
- 多准则决策模型-TOPSIS评价方法-源码
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ...
- 自动文档摘要评价方法:Edmundson,ROUGE
自动文档摘要评价方法大致分为两类: (1)内部评价方法(Intrinsic Methods):提供参考摘要,以参考摘要为基准评价系统摘要的质量.系统摘要与参考摘要越吻合, 质量越高. (2)外部评价方 ...
- 自己定义标签中tagsupport的一些方法
TagSupport生命周期 TagSupport类分别实现了Tag与IterationTag界面,其预设的回传值是:doStartTag()回传 SKIP_BODY.EVAL_BODY_INCLUD ...
- 全参考视频质量评价方法(PSNR,SSIM)以及与MOS转换模型
转载处:http://blog.csdn.NET/leixiaohua1020/article/details/11694369 最常用的全参考视频质量评价方法有以下2种: PSNR(峰值信噪比):用 ...
- 图像质量评价方法PSNR+SSIM&&评估指标SROCC,PLCC
update:2018-04-07 今天发现ssim的计算里面有高斯模糊,为了快速计算,先对每个小块进行计算,然后计算所有块的平均值.可以参考源代码实现,而且代码实现有近似的在里面!matlab中中图 ...
随机推荐
- HDU - 6043 KazaQ's Socks(找规律)
题意:有n双袜子,编号1到n,放在衣柜里,每天早晨取衣柜中编号最小的袜子穿,晚上将这双袜子放在篮子里,当篮子里有n-1双袜子时,清洗袜子,直到第二天晚上才洗好,并将洗好的袜子重新放回衣柜. 分析:规律 ...
- 读书笔记 - js高级程序设计 - 第八章 BOM
BOM的核心对象是window 它表示浏览器的一个实例,在浏览器中,window对象有双重角色,它既是通过js访问浏览器窗口的一个接口,又是ECMAScript规定的Global对象,这意味着在网 ...
- 19 01 16 djano 视图以及url
视图 后台管理页面做好了,接下来就要做公共访问的页面了.当我们刚刚在浏览器中输入 http://127.0.0.1:8000/admin/ 之后,浏览器显示出了后台管理的登录页面,那有没有同学想过这个 ...
- Pycharm2020最新激活码|永久激活(附最新激活码和插件)
最近很多人的Pycharm激活时间又过期了,后台很多人索要激活码,我就再把激活的方法汇和工具再梳理一次给大家. 最主要有两种激活方式(两种方式需要的激活码不同): 一.激活码激活: 一般一年多需要激活 ...
- LeetCode 124. Binary Tree Maximum Path Sum 二叉树中的最大路径和 (C++/Java)
题目: Given a non-empty binary tree, find the maximum path sum. For this problem, a path is defined as ...
- 广义高斯分布(GGD)和非对称广义高斯分布(AGGD)
<No-Reference Image Quality Assessment in the Spatial Domain>,BRISQUE. 1. 广义高斯分布,generalized G ...
- python print %s 号格式化输出
python %号格式化输出: 一种字符串格式化的语法, 基本用法是将值插入到%s占位符的字符串中. %s,表示格式化一个对象为字符 "%±(正负号表示)3(数字表示字符串的长度)s&quo ...
- 标准库模块——json模块
将Python数据类型转换为其他代码格式叫做(序列化),而json就是在各个代码实现转换的中间件. 序列化要求: 1. 只能有int,str,bool,list,dict,tuple的类型支持序列化. ...
- CSS(3)之 less 和rem
less 预编译脚本语言. LESS 语法 less语法2 LESS中文 rem rem的适配原理 rem 是相对于页面根源素html的字体大小的一个尺寸单位 页面内容可以使用rem为单位,那么htm ...
- POJ-1733 Parity game(带权并查集区间合并)
http://poj.org/problem?id=1733 题目描述 你和你的朋友玩一个游戏.你的朋友写下来一连串的0或者1.你选择一个连续的子序列然后问他,这个子序列包含1的个数是奇数还是偶数.你 ...