Agri-Net
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 45050   Accepted: 18479

Description

Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course. 

Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms. 

Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm. 

The distance between any two farms will not exceed 100,000. 

Input

The input includes several cases. For each case, the first line contains the number of farms, N (3 <= N <= 100). The following lines contain the N x N conectivity matrix, where each element shows the distance from on farm to another. Logically, they are N lines
of N space-separated integers. Physically, they are limited in length to 80 characters, so some lines continue onto others. Of course, the diagonal will be 0, since the distance from farm i to itself is not interesting for this problem.

Output

For each case, output a single integer length that is the sum of the minimum length of fiber required to connect the entire set of farms.

Sample Input

4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0

Sample Output

28

题意简单来说就是给了一个图的邻接矩阵,求这个图的最小生成树的代价。

Prim算法模板题。

代码:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std; int num;
int map[102][102];
int stack[102];
int minidis[102]; int prim()
{
int i,j,s,result; memset(stack,0,sizeof(stack));
for(i=1;i<=num;i++)
{
minidis[i]=100005;
} stack[1]=1;
minidis[1]=0;
s=1;
result=0; for(i=1;i<=num-1;i++)
{
int min_all=100005;
int min_temp=0;
for(j=2;j<=num;j++)
{
if(stack[j]==0&&minidis[j]>map[s][j])
{
minidis[j]=map[s][j];
}
if(stack[j]==0&&minidis[j]<min_all)
{
min_temp=j;
min_all=minidis[j];
}
}
s=min_temp;
stack[s]=1;
result += min_all;
}
return result;
} int main()
{
int i,j; while(cin>>num)
{
for(i=1;i<=num;i++)
{
for(j=1;j<=num;j++)
{
scanf("%d",&map[i][j]);
}
}
cout<<prim()<<endl;
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 1258:Agri-Net Prim最小生成树模板题的更多相关文章

  1. POJ 1258 Agri-Net 【Prime】模板题

    题目链接>>> 题目大意:     给你N*N矩阵,表示N个村庄之间的距离.FJ要把N个村庄全都连接起来,求连接的最短距离(即求最小生成树).解析如下: #include <c ...

  2. POJ 1789 Truck History (Kruskal最小生成树) 模板题

    Description Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for v ...

  3. POJ 1789 Truck History【最小生成树模板题Kruscal】

    题目链接:http://poj.org/problem?id=1789 大意: 不同字符串相同位置上不同字符的数目和是它们之间的差距.求衍生出全部字符串的最小差距. #include<stdio ...

  4. poj 1251 poj 1258 hdu 1863 poj 1287 poj 2421 hdu 1233 最小生成树模板题

    poj 1251  && hdu 1301 Sample Input 9 //n 结点数A 2 B 12 I 25B 3 C 10 H 40 I 8C 2 D 18 G 55D 1 E ...

  5. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  6. POJ 1860 Currency Exchange【bellman-Ford模板题】

    传送门:http://poj.org/problem?id=1860 题意:给出每两种货币之间交换的手续费和汇率,求出从当前货币s开始交换回到s,能否使本金增多. 思路:bellman-Ford模板题 ...

  7. O - 听说下面都是裸题 (最小生成树模板题)

    Economic times these days are tough, even in Byteland. To reduce the operating costs, the government ...

  8. POJ 3624 Charm Bracelet(01背包模板题)

    题目链接 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 52318   Accepted: 21912 Descriptio ...

  9. POJ 1273:Drainage Ditches 网络流模板题

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 63339   Accepted: 2443 ...

随机推荐

  1. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 字体图标(Glyphicons):glyphicon glyphicon-question-sign

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...

  2. Golang的选择结构-switch语句

    Golang的选择结构-switch语句 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.选择语句应用场景概述 选择结构也称为条件判断,生活中关于判断的场景也非常的多,比如: ( ...

  3. 循环指令 LOOP

    循环程序: 如果需要重复执行若干次同样任务.用循环执行 循环指令: LOOP <跳转标号> 用累加器的低字做循环计数器 每次执行LOOP 指令的时候,累加器的低字减去1 若减去后 非零 , ...

  4. IP地址 网络地址 子网掩码

    提纲 (1)IP地址 (2)网络地址 (3)子网掩码     IP地址=网络地址+主机地址,图1中的IP地址是192.168.100.1,这个地址中包含了很多含义.如下所示:网络地址(相当于街道地址) ...

  5. 关于连接查询主要是左右连接查询中,where和on的区别

    工作中,今天用到左连接查询,我自己造的数据,需要根据条件进行筛选,但是筛选不符合我的要求,最终发现是左右连接中where和on的区别,在作怪,工作中用的表关联太多,我下面简化要点,仅仅把注意点写个简单 ...

  6. java中vector、ArrayList、LinkedList的区别

    转 首先看这两类都实现List接口,而List接口一共有三个实现类,分别是ArrayList.Vector和LinkedList.List用于存放多个元素,能够维护元素的次序,并且允许元素的重复.3个 ...

  7. 指令——mkdir

    一个完整的指令的标准格式: Linux通用的格式——#指令主体(空格) [选项](空格) [操作对象] 一个指令可以包含多个选项,操作对象也可以是多个 指令mkdir——(make directory ...

  8. 洛谷[Luogu] 普及村总结

    总结 简单的模拟 交叉模拟 排序 排序EX

  9. JavaScript中的面向对象及有关应用

    面向对象(OOP:Object Oriented Programming)  面向对象的概念 面向对象是一种程序设计思想,将数据和处理数据的程序封装到对象中. 特性:抽象.继承.封装.多态. 优点:提 ...

  10. 使用docker快速体验kali linux

    环境 运行在 64位 机器 企业版的 win10 系统 下载镜像 首先搜索docker download 去官网下载docker:https://www.docker.com/products/doc ...