@atcoder - ARC077F@ SS
@description@
规定一个字符串为 “偶串” 当且仅当它可以表示成两个相同的字符串连接(如 "xyzxyz" 或 "aaaaaa")。
给定一个仅由小写字母组成的初始偶串 \(S_0\)。我们可以通过在 \(S_i\) 后加最少的字符(至少一个字符)得到新的偶串 \(S_{i+1}\),不难发现 \(S_{i+1}\) 是唯一存在的。
求在 \(S_{10^{100}}\) 中第 l 个字符到第 r 个字符中每个小写字母的出现次数。
@solution@
考虑一个偶串 \(TT\) 怎么加最少的字符成为新的偶串 \(T'T'\):找到 \(T\) 的最大 border \(P\) 与最小周期 \(Q\),将 \(T\) 写作 \(Q + P\),则 \(T' = Q + P + Q\)。
我们考虑已知 \(T\) 怎么快速求 \(T'\) 的最大 border:
如果 \(T\) 是循环串,则 \(T'\) 也是循环串,因此 \(T'\) 的最大 border 长度 = \(|T'| - |Q|\)。
否则,\(T'\) 的最大 border 长度为 \(|Q|\)。
关于第二条结论,首先注意到 \(T'\) 的最大 border 长度 \(\leq |P| + |Q|\) 且 \(\geq |Q|\)。
画一画发现假如 \(T'\) 的最大 border 长度为 L,则 \(T\) 中长度为 L 的前缀存在长度为 \(|Q|\) 的 border,根据弱周期引理可推出矛盾。
关于实现,前一种太简单了不讲;后一种可以发现 \(T_i\) 是 \(T_{i-1}\) 与 \(T_{i-2}\) 的拼接,长度呈斐波那契数列增长(跟指数级差不多),因此递归求解即可。
然后发现前一种情况可以直接用后一种情况的写法,减少代码量。
@accepted code@
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 200000;
ll a[26], b[26], c[150][26], d[150];
char S[MAXN + 5]; int f[MAXN + 5];
int main() {
int n, m; ll l, r;
scanf("%s%lld%lld", S + 1, &l, &r);
n = strlen(S + 1), m = n / 2;
f[0] = -1, f[1] = 0;
for(int i=2;i<=m;i++) {
int j = f[i - 1];
while( j != -1 && S[i] != S[j + 1] )
j = f[j];
f[i] = j + 1;
}
int p = m - f[m];
for(int i=1;i<=p;i++) c[0][S[i] - 'a']++;
for(int i=1;i<=m;i++) c[1][S[i] - 'a']++;
int k; d[0] = p, d[1] = m;
for(k=1;d[k]<=r;k++) {
for(int j=0;j<26;j++)
c[k + 1][j] = c[k][j] + c[k - 1][j];
d[k + 1] = d[k] + d[k - 1];
}
ll t = r;
for(int i=k;i>=0;i--) {
if( t >= d[i] ) {
for(int j=0;j<26;j++)
a[j] += c[i][j];
t -= d[i];
}
}
for(int i=1;i<=t;i++)
a[S[i] - 'a']++;
t = l - 1;
for(int i=k;i>=0;i--) {
if( t >= d[i] ) {
for(int j=0;j<26;j++)
a[j] -= c[i][j];
t -= d[i];
}
}
for(int i=1;i<=t;i++)
a[S[i] - 'a']--;
for(int i=0;i<26;i++) printf("%lld ", a[i]);
}
@details@
当然关于实现,递推也可以,而且写起来也比较简单。
@atcoder - ARC077F@ SS的更多相关文章
- AtCoder刷题记录
构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...
- 【arc077f】AtCoder Regular Contest 077 F - SS
题意 给你一个形如"SS"的串S,以及一个函数\(f(x)\),\(x\)是一个形如"SS"的字符串,\(f(x)\)也是一个形如"SS"的 ...
- AtCoder Beginner Contest 066 B - ss
题目链接:http://abc066.contest.atcoder.jp/tasks/abc066_b Time limit : 2sec / Memory limit : 256MB Score ...
- 【ARC077F】SS
Description 如果某个串可以由两个一样的串前后连接得到,我们就称之为"偶串".比如说"xyzxyz"和"aaaaaa"是偶串,而& ...
- 【ARC077F】SS kmp+打表找规律
Description 如果某个串可以由两个一样的串前后连接得到,我们就称之为"偶串".比如说"xyzxyz"和"aaaaaa"是偶串, ...
- 【arc077f】AtCoder Regular Contest 074 F - Lotus Leaves
题意 给定一个n*m的池塘,每个格子上可能有叶子. 从一个叶子出发,可以跳到相同行或相同列的叶子. 问至少去掉多少叶子,使得起点不能到达终点. \(n,m<=100\) 解法 很显然的最小割模型 ...
- AtCoder Grand Contest 008
AtCoder Grand Contest 008 A - Simple Calculator 翻译 有一个计算器,上面有一个显示按钮和两个其他的按钮.初始时,计算器上显示的数字是\(x\),现在想把 ...
- 【atcoder F - Namori】**
F- Namori http://agc004.contest.atcoder.jp/tasks/agc004_f Time limit : 2sec / Memory limit : 256MB S ...
- AtCoder Regular Contest 093
AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...
随机推荐
- Kubeedge-mapper 实现
应用场景: 利用GitHub上的温度传感器的例子作为讲解,实现从云端获取设备终端状态及使用Java模拟设备数据.其实和官网给的视频一样,只需要将终端设备的数据转换为支持MQTT协议传输的数据,云端就可 ...
- C语言基础知识(二)——二维数组
二维数组本质 二维数组本质就是一维数组,只不过**形式是二维**,类似矩阵,使用二维数组表示会更加形象. 二维数组实例 float rain[5][12]; //内含5个数组元素的数组,每个数组元素内 ...
- An easy problem(hdu2055)
输入格式:一个整型,然后循环输入一个字符加一个整型. 思考:首先用scanf_s()函数输入整型.然后一个大循环,用scanf_s()函数同时输入字符和整型.第一个scanf_s()函数后,后面还要输 ...
- 去重函数unique,sort,erase的应用
std::unique 一.总述 unique函数属于STL中比较常用函数,它的功能是元素去重.即"删除"序列中所有相邻的重复元素(只保留一个).此处的删除,并不 是真的删除,而是 ...
- 你还不懂 Tomcat 的优化吗?
前言 Tomcat 服务器是一个开源的轻量级Web应用服务器,在中小型系统和并发量小的场合下被普遍使用,是开发和调试Servlet.JSP 程序的首选.相信大家对于 Tomcat 已经是非常熟悉了,本 ...
- Verilog语言中的系统任务和系统函数
Verilog语言中预先定义了一些任务和函数,用于完成一些特殊的功能,它们被称为系统任务和系统函数,这些函数大多数都是只能在Testbench仿真中使用的,使我们更方便的进行验证. `timescal ...
- SpringBoot自定义装配的多种实现方法
Spring手动装配实现 对于需要加载的类文件,使用@Configuration/@Component/@Service/@Repository修饰 @Configuration public cla ...
- Python中对文件的读写
读写文件前,我们先必须了解一下,在磁盘上读写文件的功能都是由操作系统提供的,现代操作系统不允许普通的程序直接操作磁盘. 读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系 ...
- c# 优化代码的一些规则——使用is或as和强制类型转换的区别[三]
前言 使用as和强制类型转换的时候的区别是否仅仅是代码形式上的区别. 答案是肯定不是的. 正文 看两段代码: object o = Factory.GetObject(); Student stude ...
- JVM调优总结(五)-典型配置举例
以下配置主要针对分代垃圾回收算法而言. 堆大小设置 年轻代的设置很关键 JVM中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟内存限制:系统的可用物理 ...