@atcoder - AGC034F@ RNG and XOR
@description@
给定一个值域在 [0, 2^N) 的随机数生成器,给定参数 A[0...2^N-1]。
该生成器有 \(\frac{A_i}{\sum A}\) 的概率生成 i,每次生成都是独立的。
现在有一个 X,初始为 0。每次操作生成一个随机数 v 并将 X 异或 v。
对于每一个 i ∈ [0, 2^N),求期望多少次操作 X 第一次等于 i。
原题题面。
@solution@
不难想到期望 dp。定义 dp[i] 表示到达 i 的期望次数,则:
dp[i] = (\sum_{j=0}^{2^N - 1}dp[j]\times p[i\oplus j]) + 1
\]
其中 \(p[i] = \frac{A_i}{\sum A}\)。
朴素做法是高斯消元。显然过不了。
对于高斯消元的常规优化是利用转移的图结构(比如 DAG,链或者树),但是这个题转移的图是完全图,做不到。
怎么办?观察转移式的结构,发现它其实是异或卷积。于是我们尝试走生成函数那一套。
如果用生成函数的记法,又可以将其记作 \(dp\oplus P + I = dp + k\times T\),其中 \(I[i] = 1, T[i] = [i = 0]\),\(k\) 是一个未知数。
注意当 n = 0 卷积是不成立的,所以需要在末尾填上一项 \(k\times T\)。
变一下形得到 \(dp\oplus (T - P) = I - k\times T\),两边同时进行 fwt 得到 \(dp'\times (T - P)' = I' - k\times T'\)。
注意到 \((T - P)'\) 的第 0 项始终为 0(根据 fwt 的定义可知),故 \(I' - k\times T'\) 的第 0 项也为 0,由此可以解出 k。
但是这样一来我们又不知道 \(dp'[0]\) 的值为多少,再次设未知数为 q。进行逆变换时把未知数代进去一起运算就可以了。
然后 \(dp\) 数列就可以表示成含 q 的一次函数,而根据 \(dp[0] = 0\) 可以反解出 q,于是 \(dp\) 数列就解出来了。
@accepted code@
#include <cstdio>
const int MOD = 998244353;
const int INV2 = (MOD + 1) >> 1;
int add(int x, int y) {return (x + y >= MOD ? x + y - MOD : x + y);}
int sub(int x, int y) {return (x - y < 0 ? x - y + MOD : x - y);}
int mul(int x, int y) {return 1LL*x*y%MOD;}
int pow_mod(int b, int p) {
int ret = 1;
for(int i=p;i;i>>=1,b=mul(b,b))
if( i & 1 ) ret = mul(ret,b);
return ret;
}
struct node{
int k, b;
node() : k(0), b(0) {}
node(int _k, int _b) : k(_k), b(_b) {}
int get(int x) {return add(mul(k, x), b);}
friend node operator + (node a, node b) {
return node(add(a.k, b.k), add(a.b, b.b));
}
friend node operator - (node a, node b) {
return node(sub(a.k, b.k), sub(a.b, b.b));
}
friend node operator * (node a, int k) {
return node(mul(a.k, k), mul(a.b, k));
}
friend node operator / (node a, int k) {
return a * pow_mod(k, MOD - 2);
}
};
void fwt(node *A, int m, int type) {
int n = (1 << m), f = (type == 1 ? 1 : INV2);
for(int i=1;i<=m;i++) {
int s = (1 << i), t = (s >> 1);
for(int j=0;j<n;j+=s)
for(int k=0;k<t;k++) {
node x = A[j+k], y = A[j+k+t];
A[j+k] = (x + y)*f, A[j+k+t] = (x - y)*f;
}
}
}
node A[1<<18], B[1<<18], C[1<<18], f[1<<18];
int main() {
int N, M, S = 0; scanf("%d", &N), M = (1 << N);
for(int i=0;i<M;i++) scanf("%d", &A[i].b), S = add(S, A[i].b);
S = pow_mod(S, MOD - 2);
for(int i=0;i<M;i++) A[i].b = sub(i == 0 ? 1 : 0, mul(A[i].b, S));
for(int i=0;i<M;i++) B[i].b = 1;
C[0].b = MOD - 1;
fwt(A, N, 1), fwt(B, N, 1), fwt(C, N, 1);
int tmp = mul(B[0].b, pow_mod(C[0].b, MOD-2));
for(int i=1;i<M;i++)
f[i] = (B[i] - C[i]*tmp) / A[i].b;
f[0].k = 1; fwt(f, N, -1);
int x = sub(0, mul(pow_mod(f[0].k, MOD-2), f[0].b));
for(int i=0;i<M;i++) printf("%d\n", f[i].get(x));
}
@details@
感觉我的做法很像是乱搞。。。不过我也不大清楚官方正解是啥子。。。
@atcoder - AGC034F@ RNG and XOR的更多相关文章
- 【杂题】[AGC034F] RNG and XOR【集合幂级数】【FWT】【DP】
Description 你有一个随机数生成器,它会以一定的概率生成[0,2^N-1]中的数,每一个数的概率是由序列A给定的,Pi=Ai/sum(Ai) 现在有一个初始为0的数X,每一轮随机生成一个数v ...
- [AGC034F]RNG and XOR
题目 点这里看题目. 分析 第一步可以将\(A\)数组转化成概率\(P(j)\):每一步操作异或\(j\)的概率. 接着发现,\(x\)从\(0\)变成\(i\)的期望等于\(x\)从\( ...
- Atcoder Grand Contest 034 F - RNG and XOR(FWT)
Atcoder 题面传送门 & 洛谷题面传送门 tsc 考试前 A 的题了,结果到现在才写这篇题解--为了 2mol 我已经一周没碰键盘了,现在 2mol 结束算是可以短暂的春天 短暂地卷一会 ...
- AT4996-[AGC034F]RNG and XOR【FWT,生成函数】
正题 题目链接:https://www.luogu.com.cn/problem/AT4996 题目大意 给出一个\(0\sim 2^n-1\)下标的数组\(p\),\(p_i\)表示有\(p_i\) ...
- AtCoder abc 141 F - Xor Sum 3(线性基)
传送门 题意: 给出\(n\)个数\(a_i\),现在要将其分为两堆,使得这两堆数的异或和相加最大. 思路: 考虑线性基贪心求解. 但直接上线性基求出一组的答案是行不通的,原因之后会说. 注意到如果二 ...
- [atAGC034F]RNG and XOR
令$N=2^{n}$先将$\forall 0\le i<N,a_{i}$除以$\sum_{i=0}^{N-1}a_{i}$,即变为概率 令$f_{i}$表示$i$的答案(第一次变成$i$的期望步 ...
- GOOD BYE OI
大米饼正式退役了,OI给我带来很多东西 我会的数学知识基本都在下面了 博客园的评论区问题如果我看到了应该是会尽力回答的... 这也是我作为一个OIer最后一次讲课的讲稿 20190731 多项式乘法 ...
- 【AtCoder】AGC034
AGC034 刷了那么久AtCoder我发现自己还是只会ABCE(手动再见 A - Kenken Race 大意是一个横列,每个点可以跳一步或者跳两步,每个格子是空地或者石头,要求每一步不能走到石头或 ...
- Atcoder Beginner Contest 121 D - XOR World(区间异或和)
题目链接:https://atcoder.jp/contests/abc121/tasks/abc121_d 题目很裸(Atcoder好像都比较裸 就给一个区间求异或和 n到1e12 肯定不能O(n) ...
随机推荐
- Solr-常见问题汇总(持续更新)
本文主要记录solr使用中遇到的一些常见问题及命令 关于solrConfig.xml的配置博客:https://blog.csdn.net/yuh_LLllccy/article/details/88 ...
- vscode环境配置(三)——解决控制台终端中文输出乱码
由于系统终端默认编码为GBK,所以需要修改为UTF-8 方法一 打开cmd输入chcp查看编码格式,查看以及修改如下图所示: 方法二
- 【Java】手把手理解CAS实现原理
先来看看概念,[CAS] 全称“CompareAndSwap”,中文翻译即“比较并替换”. 定义:CAS操作包含三个操作数 —— 内存位置(V),期望值(A),和新值(B). 如果内存位置的值与期望值 ...
- Word使用技巧——持续更新
Q1:word 2007 打开后默认显示缩略图而不是文档结构图? A1:三步曲 1)打开word,关闭缩略图,保存并关闭文档 2)重新打开word(此时应该没有显示缩略图),勾选上“文档结构图”,保存 ...
- [杂谈-随口一说]Keep learning!
随口一说 好些日子没有发表公号文章了, 想说,最近真是忙呢,有时候觉得真忙,有时候还觉得忙的脑子一团乱麻. 原计划的公众号文章将近一个月了一篇没写,时间,都去哪儿了? 周末自己搬家,工作中的任务,学习 ...
- 在 MacOS 中使用 multipass 安装 microk8s 环境
在 MacOS 中使用 multipass 安装 microk8s 环境 Multipass & MicroK8s 介绍 What is Kubernetes? Kubernetes clus ...
- 50个SQL语句(MySQL版) 问题十二
--------------------------表结构-------------------------- student(StuId,StuName,StuAge,StuSex) 学生表 tea ...
- Rocket - tilelink - ProbePicker
简单介绍ProbePicker的实现. 1. 基本介绍 用于把多个Cache client合并成一个: 2. diplomacy node ProbePicker的 ...
- Java实现 LeetCode 731 我的日程安排表 II(二叉树)
731. 我的日程安排表 II 实现一个 MyCalendar 类来存放你的日程安排.如果要添加的时间内不会导致三重预订时,则可以存储这个新的日程安排. MyCalendar 有一个 book(int ...
- Java实现 蓝桥杯VIP 算法提高 陶陶摘苹果2
算法提高 陶陶摘苹果2 时间限制:1.0s 内存限制:256.0MB 问题描述 陶陶家的院子里有一棵苹果树,每到秋天树上就会结出n个苹果.苹果成熟的时候,陶陶就会跑去摘苹果.陶陶有个30厘米高的板凳, ...