OpenCV 使用二维特征点(Features2D)和单映射(Homography)寻找已知物体
#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp" using namespace cv; void readme(); /** @function main */
int main( int argc, char** argv )
{
if( argc != )
{ readme(); return -; } Mat img_object = imread( argv[], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_scene = imread( argv[], CV_LOAD_IMAGE_GRAYSCALE ); if( !img_object.data || !img_scene.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -; } //-- Step 1: Detect the keypoints using SURF Detector
int minHessian = ; SurfFeatureDetector detector( minHessian ); std::vector<KeyPoint> keypoints_object, keypoints_scene; detector.detect( img_object, keypoints_object );
detector.detect( img_scene, keypoints_scene ); //-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor; Mat descriptors_object, descriptors_scene; extractor.compute( img_object, keypoints_object, descriptors_object );
extractor.compute( img_scene, keypoints_scene, descriptors_scene ); //-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches ); double max_dist = ; double min_dist = ; //-- Quick calculation of max and min distances between keypoints
for( int i = ; i < descriptors_object.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
} printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist ); //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< DMatch > good_matches; for( int i = ; i < descriptors_object.rows; i++ )
{ if( matches[i].distance < *min_dist )
{ good_matches.push_back( matches[i]); }
} Mat img_matches;
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-), Scalar::all(-),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene; for( int i = ; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
} Mat H = findHomography( obj, scene, CV_RANSAC ); //-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners();
obj_corners[] = cvPoint(,); obj_corners[] = cvPoint( img_object.cols, );
obj_corners[] = cvPoint( img_object.cols, img_object.rows ); obj_corners[] = cvPoint( , img_object.rows );
std::vector<Point2f> scene_corners(); perspectiveTransform( obj_corners, scene_corners, H); //-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( img_matches, scene_corners[] + Point2f( img_object.cols, ), scene_corners[] + Point2f( img_object.cols, ), Scalar(, , ), );
line( img_matches, scene_corners[] + Point2f( img_object.cols, ), scene_corners[] + Point2f( img_object.cols, ), Scalar( , , ), );
line( img_matches, scene_corners[] + Point2f( img_object.cols, ), scene_corners[] + Point2f( img_object.cols, ), Scalar( , , ), );
line( img_matches, scene_corners[] + Point2f( img_object.cols, ), scene_corners[] + Point2f( img_object.cols, ), Scalar( , , ), ); //-- Show detected matches
imshow( "Good Matches & Object detection", img_matches ); waitKey();
return ;
} /** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
OpenCV 使用二维特征点(Features2D)和单映射(Homography)寻找已知物体的更多相关文章
- OpenCV使用二维特征点(Features2D)和单映射(Homography)寻找已知物体
使用二维特征点(Features2D)和单映射(Homography)寻找已知物体 目标 在本教程中我们将涉及以下内容: 使用函数 findHomography 寻找匹配上的关键点的变换. 使用函数 ...
- OpenCV开发笔记(六十九):红胖子8分钟带你使用传统方法识别已知物体(图文并茂+浅显易懂+程序源码)
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...
- 开发环境配置--Ubuntu+Qt4+OpenCV(二)
同系列文章 1. 开发环境配置--Ubuntu+Qt4+OpenCV(一) 2. 开发环境配置--Ubuntu+Qt4+OpenCV(二) 3. 开发环境配置--Ubuntu+Qt4+OpenCV(三 ...
- 使用OpenCV查找二值图中最大连通区域
http://blog.csdn.net/shaoxiaohu1/article/details/40272875 使用OpenCV查找二值图中最大连通区域 标签: OpenCVfindCoutour ...
- OpenCV图像变换二 投影变换与极坐标变换实现圆形图像修正
投影变换 在放射变换中,物体是在二维空间中变换的.如果物体在三维空间中发生了旋转,那么这种变换就成为投影变换,在投影变换中就会出现阴影或者遮挡,我们可以运用二维投影对三维投影变换进行模块化,来处理阴影 ...
- PyTorch深度学习实践——处理多维特征的输入
处理多维特征的输入 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili 这一讲介绍输入为多维数据时的分类. 一个数据集 ...
- VS2010/MFC编程入门之二(利用MFC向导生成单文档应用程序框架)
VS2010/MFC编程入门之二(利用MFC向导生成单文档应用程序框架)-软件开发-鸡啄米 http://www.jizhuomi.com/software/141.html 上一讲中讲了VS20 ...
- 第二十二章 Django会话与表单验证
第二十二章 Django会话与表单验证 第一课 模板回顾 1.基本操作 def func(req): return render(req,'index.html',{'val':[1,2,3...]} ...
- opencv统计二值图黑白像素个数
#include "iostream" #include "queue" #include "Windows.h" #include < ...
随机推荐
- vue的选项卡功能
选项卡:点击不同的按钮会显示不同的内容 <!DOCTYPE html> <html lang="en"> <head> <meta cha ...
- SeetaFaceEngine系列1:Face Detection编译和使用
SeetaFace,根据GitHub上的介绍,就是一个开源的人脸检测.矫正和识别的开源库,是采用C++来编写的,并且是在CPU上执行的,没有用到GPU,但是可以用SSE或者OpenMP来加速.整个库分 ...
- Springboot注解--@Controller和@RestController的区别
1.使用@Controller 注解,在对应的方法上,视图解析器可以解析return 的jsp,html页面,并且跳转到相应页面:若返回json等内容到页面,则需要加@ResponseBody注解 2 ...
- 用户交互Scanner
用户交互Scanner java.util.Scanner Scanner类可以获取用户的输入. Java 5 通过Scanner类的next()和nextLine()方法获取输入的字符串 在读取前我 ...
- 201604-1 折点计数 Java
思路: 这个题要小心考虑不全.左右两边都比这个数小 或者 左右两边都比这个数大 import java.util.Scanner; public class Main { public static ...
- spring学习之依赖注入DI与控制反转IOC
一 Ioc基础 1.什么是Ioc? Ioc(Inversion of Control)既控制反转,Ioc不是一种技术,而是一种思想,在Java开发中意味着将设计好的对象交给容器来进行控制,并不是像传统 ...
- lightgbm直方图算法
https://blog.csdn.net/anshuai_aw1/article/details/83040541
- linux mysql备份数据库
$ mysqldump -u root -p 数据库名称 > beifen.sql 恢复 source beifen.sql
- 题解【[BJOI2015]树的同构】
切了省选题+紫题,来写个题解 这题其实挺水,才120行代码 该题写了我一天(上午1.5h,晚上10min = 一天) hash,对于节点A,\[hashval[A] = \{hashval[i]\ti ...
- 023.Python的随机模块和时间模块
一 random 随机模块 1.1 获取随机0-1之间的小数(左闭右开) 0<= x < 1 import random res = random.random() print(res) ...