#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp" using namespace cv; void readme(); /** @function main */
int main( int argc, char** argv )
{
if( argc != )
{ readme(); return -; } Mat img_object = imread( argv[], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_scene = imread( argv[], CV_LOAD_IMAGE_GRAYSCALE ); if( !img_object.data || !img_scene.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -; } //-- Step 1: Detect the keypoints using SURF Detector
int minHessian = ; SurfFeatureDetector detector( minHessian ); std::vector<KeyPoint> keypoints_object, keypoints_scene; detector.detect( img_object, keypoints_object );
detector.detect( img_scene, keypoints_scene ); //-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor; Mat descriptors_object, descriptors_scene; extractor.compute( img_object, keypoints_object, descriptors_object );
extractor.compute( img_scene, keypoints_scene, descriptors_scene ); //-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches ); double max_dist = ; double min_dist = ; //-- Quick calculation of max and min distances between keypoints
for( int i = ; i < descriptors_object.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
} printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist ); //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< DMatch > good_matches; for( int i = ; i < descriptors_object.rows; i++ )
{ if( matches[i].distance < *min_dist )
{ good_matches.push_back( matches[i]); }
} Mat img_matches;
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-), Scalar::all(-),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); //-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene; for( int i = ; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
} Mat H = findHomography( obj, scene, CV_RANSAC ); //-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners();
obj_corners[] = cvPoint(,); obj_corners[] = cvPoint( img_object.cols, );
obj_corners[] = cvPoint( img_object.cols, img_object.rows ); obj_corners[] = cvPoint( , img_object.rows );
std::vector<Point2f> scene_corners(); perspectiveTransform( obj_corners, scene_corners, H); //-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( img_matches, scene_corners[] + Point2f( img_object.cols, ), scene_corners[] + Point2f( img_object.cols, ), Scalar(, , ), );
line( img_matches, scene_corners[] + Point2f( img_object.cols, ), scene_corners[] + Point2f( img_object.cols, ), Scalar( , , ), );
line( img_matches, scene_corners[] + Point2f( img_object.cols, ), scene_corners[] + Point2f( img_object.cols, ), Scalar( , , ), );
line( img_matches, scene_corners[] + Point2f( img_object.cols, ), scene_corners[] + Point2f( img_object.cols, ), Scalar( , , ), ); //-- Show detected matches
imshow( "Good Matches & Object detection", img_matches ); waitKey();
return ;
} /** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }

OpenCV 使用二维特征点(Features2D)和单映射(Homography)寻找已知物体的更多相关文章

  1. OpenCV使用二维特征点(Features2D)和单映射(Homography)寻找已知物体

    使用二维特征点(Features2D)和单映射(Homography)寻找已知物体 目标 在本教程中我们将涉及以下内容: 使用函数 findHomography 寻找匹配上的关键点的变换. 使用函数  ...

  2. OpenCV开发笔记(六十九):红胖子8分钟带你使用传统方法识别已知物体(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  3. 开发环境配置--Ubuntu+Qt4+OpenCV(二)

    同系列文章 1. 开发环境配置--Ubuntu+Qt4+OpenCV(一) 2. 开发环境配置--Ubuntu+Qt4+OpenCV(二) 3. 开发环境配置--Ubuntu+Qt4+OpenCV(三 ...

  4. 使用OpenCV查找二值图中最大连通区域

    http://blog.csdn.net/shaoxiaohu1/article/details/40272875 使用OpenCV查找二值图中最大连通区域 标签: OpenCVfindCoutour ...

  5. OpenCV图像变换二 投影变换与极坐标变换实现圆形图像修正

    投影变换 在放射变换中,物体是在二维空间中变换的.如果物体在三维空间中发生了旋转,那么这种变换就成为投影变换,在投影变换中就会出现阴影或者遮挡,我们可以运用二维投影对三维投影变换进行模块化,来处理阴影 ...

  6. PyTorch深度学习实践——处理多维特征的输入

    处理多维特征的输入 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili 这一讲介绍输入为多维数据时的分类. 一个数据集 ...

  7. VS2010/MFC编程入门之二(利用MFC向导生成单文档应用程序框架)

    VS2010/MFC编程入门之二(利用MFC向导生成单文档应用程序框架)-软件开发-鸡啄米 http://www.jizhuomi.com/software/141.html   上一讲中讲了VS20 ...

  8. 第二十二章 Django会话与表单验证

    第二十二章 Django会话与表单验证 第一课 模板回顾 1.基本操作 def func(req): return render(req,'index.html',{'val':[1,2,3...]} ...

  9. opencv统计二值图黑白像素个数

    #include "iostream" #include "queue" #include "Windows.h" #include < ...

随机推荐

  1. springboot rabbitmq消息同步用作接口调用

    1.引入依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...

  2. 吴裕雄--天生自然 JAVASCRIPT开发学习: this 关键字

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  3. Hadoop的常用指令

    -help:查看帮助 hadoop fs -help rm -rm [-f] [-r|-R] [-skipTrash] <src> ... : Delete all files that ...

  4. 项目常用JS方法封装--奋斗的IT青年(微信公众号)

                                                                                                        ...

  5. IE浏览器F12调试模式不能使用或报错以及安装程序遇到错误0x80240037的解决办法

    记录一下,方便以后查找 IE浏览器F12调试模式不能使用: 需要下载补丁: 64位系统 然后下载安装,就能解决问题. 要是在安装时遇到出现: 安装程序遇到错误 0x80240037   解决方式 最后 ...

  6. [Algo] 611. Compress String II

    Given a string, replace adjacent, repeated characters with the character followed by the number of r ...

  7. 吴裕雄--天生自然 PYTHON3开发学习:基本数据类型

    #!/usr/bin/python3 counter = 100 # 整型变量 miles = 1000.0 # 浮点型变量 name = "runoob" # 字符串 print ...

  8. 吴裕雄--天生自然 PHP开发学习:MySQL 插入多条数据

    <?php $servername = "localhost"; $username = "root"; $password = "admin& ...

  9. keras猫狗图像识别

    这里,我们介绍的是一个猫狗图像识别的一个任务.数据可以从kaggle网站上下载.其中包含了25000张毛和狗的图像(每个类别各12500张).在小样本中进行尝试 我们下面先尝试在一个小数据上进行训练, ...

  10. 关于shopee平台接口(php)对接示例

    2018年8月之后,shopee开始使用新接口,需要进行授权操作 1.授权 public function getAuth(){ /** * @param ShopApiShopee $model * ...