CF1316E Team Building
CF1316E 【Team Building】
状压dp,感觉比D简单
\(f[i][s]\),表示考虑前\(i\)个人,状态为\(s\)(\(s\)的第\(j-1\)个二进制位表示队员的第\(j\)个位置有没有人)的最大价值
考虑如何转移
如果不让第\(i\)个人当队员
- 如果当前已选为观众的人不足\(k\)个,则一定让它当观众,那么\(f[i][s]\)由\(f[i-1][s]+a_i\)转移来,不过这样做的前提是要先把这\(i\)个人按照他们当观众时的价值排序,从而如果当前观众不到\(k\)个但不选第\(i\)个,就一定会在后面选一个\(j(j>i)\)当观众,\(a_j<a_i\),就没有选第\(i\)个优了
- 如果已经选了\(k\)个,不能再选直接\(f[i][s]=f[i-1][s]\)
已经选了几个要通过\(s\)确定,也就是\(i-1-s\text{在二进制中1的个数}\) 个人已被选位观众
让第\(i\)个人当队员
枚举把\(i\)放在哪一位,如果要将他放在第\(j\)位,则需满足\(s\)的第\(j-1\)个二进制位为1(也就是当前的状态这一个位置有人),那么\(f[i][s]\)可以由\(f[i-1][s \oplus (j-1)]+s_{i,j}\)转移而来
这里异或的意义就是把\(s\)的第\(j-1\)个二进制位从1变0,被转移的状态肯定是第\(j\)个位置没人
那么就可以写出代码了,其实整个思考的最重要部分就在于把\(n\)个人排序,来实现 能被选去当观众就一定选,就能达到最优 的效果,复杂度\(O(np2^p)\)
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
int x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int n,p,k;
struct data{
int v,id;
LL s[10];
}a[100006];
LL f[100006][130];
inline int cmp(data aa,data aaa){return aa.v>aaa.v;}
int main(){
n=read();p=read();k=read();
for(reg int i=1;i<=n;i++) a[i].v=read(),a[i].id=i;;
for(reg int i=1;i<=n;i++)
for(reg int j=1;j<=p;j++) a[i].s[j]=read();
reg int lim=1<<p;
std::sort(a+1,a+1+n,cmp);
std::memset(f,-1,sizeof f);
f[0][0]=0;
for(reg int i=1;i<=n;i++){
for(reg int s=0;s<lim;s++){
int cnt=0;
for(reg int j=0;j<p;j++)
if(s&(1<<j)) cnt++;
int tmp=i-1-cnt;
if(tmp<k){
if(f[i-1][s]!=-1) f[i][s]=f[i-1][s]+a[i].v;;
}
else f[i][s]=f[i-1][s];
for(reg int j=1;j<=p;j++){
if((s&(1<<(j-1)))&&f[i-1][s^(1<<(j-1))]!=-1)
f[i][s]=std::max(f[i][s],f[i-1][s^(1<<(j-1))]+a[i].s[j]);
}
}
}
std::printf("%lld",f[n][lim-1]);
return 0;
}
CF1316E Team Building的更多相关文章
- BZOJ 4742: [Usaco2016 Dec]Team Building
4742: [Usaco2016 Dec]Team Building Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 21 Solved: 16[Su ...
- Spoj-BIPCSMR16 Team Building
To make competitive programmers of BUBT, authority decide to take regular programming contest. To ma ...
- BZOJ4742 : [Usaco2016 Dec]Team Building
如果我们将两个人拥有的牛混在一起,并按照战斗力从小到大排序,同时把第一个人选的牛看成$)$,第二个人选的牛看成$($的话,那么我们会发现一个合法的方案对应了一个长度为$2k$的括号序列. 于是DP即可 ...
- 1742. Team building(dfs)
1742 最小的是找联通块数 最大的找环 一个环算一个 其它的数各算一个 #include <iostream> #include<cstdio> #include<cs ...
- [USACO 2016Dec] Team Building
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4742 [算法] 动态规划 用Fi,j,k表示约翰的前i头牛和保罗的前j头牛匹配 , ...
- 简单状压dp的思考 - 最大独立集问题和最大团问题 - 壹
本文参考:CPH ,USACO Guide (大佬请越过,这是初学笔记,不要吐槽内容) 前置知识:位运算基础,动态规划基础 介绍 状态是元素的子集的动态规划算法,可以用位运算来高效的优化. 那么第一道 ...
- [Exchange 2013]创建约会和会议
简介 会议和约会之间的重要区别是,会议有与会者,并且没有约会.约会和会议可以是单实例或属于重复序列,但与会者. 房间或资源中不包括约会,因为它们不需要发送一条消息.在内部,Exchange 使用相同的 ...
- USER STORIES AND USE CASES - DON’T USE BOTH
We’re in Orlando for a working session as part of the Core Team building BABOK V3 and over dinner th ...
- 基于AWS的云服务架构最佳实践
ZZ from: http://blog.csdn.net/wireless_com/article/details/43305701 近年来,对于打造高度可扩展的应用程序,软件架构师们挖掘了若干相关 ...
随机推荐
- C语言 文件操作(八)
1.删除文件或目录 int remove(char * filename); [参数]filename为要删除的文件名,可以为一目录.如果参数filename 为一文件,则调用unlink()处理:若 ...
- Linux 磁盘管理篇(一 磁盘分区)
显示系统所有分区内容 fdisk 分区工具 parted fdisk: 执行完后按下 q 是退出不保存操作的意思 执行完后按下 w 是执行操作的意思 ...
- 中阶 d04.1 xml解析
##XML 解析 > 其实就是获取元素里面的字符数据或者属性数据. ###XML解析方式(面试常问) > 有很多种,但是常用的有两种. * DOM * SAX 转载▼
JNDI数据源的配置及使用 (2010-11-21 21:16:43)转载▼ 标签: 杂谈 分类: 数据库 数据源的作用 JDBC操作的步骤: 1. 加载驱动程序 2. 连接数据库 3. 操作数据库 ...
- 面试题 ~ 什么是RESTful?
一 : 说说什么是REST规则 ① 首先什么是REST ? 基于HTTP.URI.XML.JSON等标准和协议,支持轻量级.跨平台.跨语言的架构设计.是Web服务的一种新的架构风格(一种思想). ...
- delphi 捕捉全局异常错误的方法
private { Private declarations } public procedure GlobalExceptionHandler(Sender: TObject; E: ...
- Candy Distribution
Kids like candies, so much that they start beating each other if the candies are not fairly distribu ...
- vue2.x学习笔记(十六)
接着前面的内容:https://www.cnblogs.com/yanggb/p/12616543.html. 组件中的插槽 在2.6.0的版本中,vue为具名插槽和作用域插槽引入了一个新的统一的语法 ...
- 详解 Properties类
(请观看本人博文--<详解 I/O流>) Properties类: 概念: Properties 类的对象 是 一个持久的属性集 Properties 可 保存在流中 或 从流中加载 属性 ...