You may have already known that a standard ICPC team consists of exactly three members. The perfect team however has more restrictions. A student can have some specialization: coder or mathematician. She/he can have no specialization, but can't have both at the same time.

So the team is considered perfect if it includes at least one coder, at least one mathematician and it consists of exactly three members.

You are a coach at a very large university and you know that cc of your students are coders, mm are mathematicians and xx have no specialization.

What is the maximum number of full perfect teams you can distribute them into?

Note that some students can be left without a team and each student can be a part of no more than one team.

You are also asked to answer qq independent queries.

Input

The first line contains a single integer qq (1≤q≤1041≤q≤104) — the number of queries.

Each of the next qq lines contains three integers cc, mm and xx (0≤c,m,x≤1080≤c,m,x≤108) — the number of coders, mathematicians and students without any specialization in the university, respectively.

Note that the no student is both coder and mathematician at the same time.

Output

Print qq integers — the ii-th of them should be the answer to the ii query in the order they are given in the input. The answer is the maximum number of full perfect teams you can distribute your students into.

Example

Input
6
1 1 1
3 6 0
0 0 0
0 1 1
10 1 10
4 4 1
Output
1
3
0
0
1
3

Note

In the first example here are how teams are formed:

  1. the only team of 1 coder, 1 mathematician and 1 without specialization;
  2. all three teams consist of 1 coder and 2 mathematicians;
  3. no teams can be formed;
  4. no teams can be formed;
  5. one team consists of 1 coder, 1 mathematician and 1 without specialization, the rest aren't able to form any team;
  6. one team consists of 1 coder, 1 mathematician and 1 without specialization, one consists of 2 coders and 1 mathematician and one consists of 1 coder and 2 mathematicians.

题接:题目描述的意思就是 x个a y个b, z个c ,在a和b中至少选择一个,最终凑成3个数,c有选不选都可以,问,,最多能有多少种选择?

FS: 马虎,,,下次做这种多中过程的题目时,可以把每个过程的做法以及思路写下来。

思路: 因为z可有可无,所以我们首先要考虑z,如果z比x或者y任何一个数大的话,那就直接输出x和y的最小值。否则优先使用z即答案ans+=z,然后x和y的个数都减去个z,在考虑x和y较大的那个,求差y1,如果y>x和y最小值;

那么输出abs+=x和y的最小值,否则 用掉y  这时x=y=x-y1,,答案为ans+=(x+x)/3'

#include<bits/stdc++.h>
using namespace std;
int main(){
int t;
cin>>t;
while(t--){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
int x1=min(x,y);
int x2=max(x,y);
if(x1<=z) printf("%d\n",x1);
else {
int ans=;
ans=z;
x1=x1-z;
x2=x2-z;
int y;
y=x2-x1;
if(y>=x1) cout<<x1+ans<<endl;
else {
ans+=y;
x1-=y;
cout<<ans+(x1+x1)/<<endl;
}
}
}
return ;
}

codeforces 122C perfect team的更多相关文章

  1. Codeforces 1221C. Perfect Team

    传送门 考虑如何保证限制,首先团队数最大就是 $min(c,m)$ 但是还不够,每个团队还要 $3$ 个人,所以还要和 $(c+m+x)/3$ 再取 $min$ 这样就满足所有限制了 #include ...

  2. Educational Codeforces Round 73 (Rated for Div. 2) C. Perfect Team

    链接: https://codeforces.com/contest/1221/problem/C 题意: You may have already known that a standard ICP ...

  3. Codeforces 986D Perfect Encoding FFT 分治 高精度

    原文链接https://www.cnblogs.com/zhouzhendong/p/9161557.html 题目传送门 - Codeforces 986D 题意 给定一个数 $n(n\leq 10 ...

  4. Codeforces 980D Perfect Groups 计数

    原文链接https://www.cnblogs.com/zhouzhendong/p/9074164.html 题目传送门 - Codeforces 980D 题意 $\rm Codeforces$ ...

  5. [CodeForces - 919B] Perfect Number

    题目链接:http://codeforces.com/problemset/problem/919/B AC代码: #include<cstdio> using namespace std ...

  6. Codeforces 948D Perfect Security(字典树)

    题目链接:Perfect Security 题意:给出N个数代表密码,再给出N个数代表key.现在要将key组排序,使key组和密码组的亦或所形成的组字典序最小. 题解:要使密码组里面每个数都找到能使 ...

  7. Codeforces 932 E. Team Work(组合数学)

    http://codeforces.com/contest/932/problem/E 题意:   可以看做 有n种小球,每种小球有无限个,先从中选出x种,再在这x种小球中任选k个小球的方案数 选出的 ...

  8. Codeforces 932.E Team Work

    E. Team Work time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  9. CodeForces - 233A Perfect Permutation

    A. Perfect Permutation time limit per test: 2 seconds memory limit per test: 256 megabytes input: st ...

随机推荐

  1. PhpStorm+XAMPP+Xdebug 集成开发和断点调试环境配置

    0x01 Xdebug安装 参考:https://xdebug.org/docs/install cd xdebug-/ phpize sudo ./configure --enable-xdebug ...

  2. 洛谷P1003 铺地毯 模拟

    这一题就是一个很普通的模拟,每次输入的时候存储四个角的值 把四个角的横纵坐标存储在一排.然后在倒序遍历一遍,查找的时候就看所要查找的坐标在不在这个范围内,如果找到了就标记一下再输出,如果没有找到就输出 ...

  3. Linux下MySQL的数据库安装

    centos7 + mysql5.7 tar包解压安装 先执行wget https://dev.mysql.com//Downloads/MySQL-5.7/mysql-5.7.18-linux-gl ...

  4. Apache服务的主要目录和配置文件详解

    Apache服务的主要目录和配置文件详解 2014-01-14 19:05:14 标签:httpd配置文件详解 apache配置文件 httpd配置文件 apache文件目录 原创作品,允许转载,转载 ...

  5. POJ - 3468 线段树单点查询,单点修改区间查询,区间修改模板(求和)

    题意: 给定一个数字n,表示这段区间的总长度.然后输入n个数,然后输入q,然后输入a,b,表示查询a,b,区间和,或者输入c 再输入三个数字a,b,c,更改a,b区间为c 思路: 线段树首先就是递归建 ...

  6. RFID 有源,半源和无源的区别

    RFID电子标签是由标签.解读器和数据传输和处理系统组成.内存带有天线的芯片,芯片中存储有能够识别目标的信息,主要作用都是为了识别货物.(更具体的自行搜索,本文单独讲三种的区别) RFID分为三种 有 ...

  7. [codevs1049]棋盘染色<迭代深搜>

    题目链接:http://codevs.cn/problem/1049/ 昨天的测试题里没有打出那可爱的迭代深搜,所以今天就来练一练. 这道题其实我看着有点懵,拿着题我就这状态↓ 然后我偷偷瞄了一眼hz ...

  8. [vijos]1066弱弱的战壕<线段树>

    题目链接:https://www.vijos.org/p/1066 这道题没什么难度,只是要一个排序然后就是线段树的基本套路模版了 但是我还是讲一讲思路吧: 给出的是坐标x,y,当一个点的x,y都小于 ...

  9. 线程状态以及sleep yield wait join方法

    前言 在日常的开发过程中,我们通过会使用Thread.sleep模拟一个耗时的任务执行过程. 在深入理解这四个方法之前,首先对线程的状态进行理解阐述. 线程概念 线程是操作系统执行任务的基本单位,处理 ...

  10. IBN-Net: 提升模型的域自适应性

    本文解读内容是IBN-Net, 笔者最初是在很多行人重识别的库中频繁遇到比如ResNet-ibn这样的模型,所以产生了阅读并研究这篇文章的兴趣,文章全称是: <Two at Once: Enha ...