计算图和autograd是十分强大的工具,可以定义复杂的操作并自动求导;然而对于大规模的网络,autograd太过于底层。

在构建神经网络时,我们经常考虑将计算安排成,其中一些具有可学习的参数,它们将在学习过程中进行优化。

TensorFlow里,有类似KerasTensorFlow-SlimTFLearn这种封装了底层计算图的高度抽象的接口,这使得构建网络十分方便。

在PyTorch中,包nn完成了同样的功能。nn包中定义一组大致等价于层的模块。一个模块接受输入的tesnor,计算输出的tensor,而且还保存了一些内部状态比如需要学习的tensor的参数等。nn包中也定义了一组损失函数(loss functions),用来训练神经网络。同时nn包中不光有一些激活函数和层操作外,还包含常见的损失函数。

代码如下:

import torch

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

N, D_in, H, D_out = 64, 1000, 100, 10

#随机生成输入和输出

x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device) # 使用nn包将我们的模型定义为一系列的层。
# nn.Sequential是包含其他模块的模块,并按顺序应用这些模块来产生其输出。
# 每个线性模块使用线性函数从输入计算输出,并保存其内部的权重和偏差张量。
# 在构造模型之后,我们使用.to()方法将其移动到所需的设备。 model = torch.nn.Sequential(
torch.nn.Linear(D_in,H),
torch.nn.ReLU(),
torch.nn.Linear(H, D_out),
).to(device) '''
nn包中还有常用的损失函数的定义
MSELoss()中参数reducetion 初始为'mean',为均值,我们使用的是'sum'为和
但是在实践中,通过设置reduction='elementwise_mean'来使用均方误差作为损失更为常见
'''
loss_fn = torch.nn.MSELoss(reduction='elementwise_mean') learning_rate = 1e-4 for t in range(500): '''
该操作为前向传播,通过向模型中传入x,进而得到输出y
同时该模块有__call__属性可以像调用函数一样调用他们
这样我们输入张量x,得到了输出张量y_pred
'''
y_pred = model(x)
loss = loss_fn(y_pred,y)
print(t,loss.item()) #运算之前清除梯度
model.zero_grad() '''
反向传播:计算模型的损失值对模型中可训练参数的梯度
每个参数是否可训练取决于require_grad的布尔值
所以此操作可以计算所有可训练参数的梯度
'''
loss.backward() #使用梯度下降进行更新
#利用for循环取出model中的parameters()
#在对param.data进行操作
with torch.no_grad():
for param in model.parameters():
param.data -= learning_rate * param.grad

Pytorch 初次使用nn包的更多相关文章

  1. PyTorch 中,nn 与 nn.functional 有什么区别?

    作者:infiniteft链接:https://www.zhihu.com/question/66782101/answer/579393790来源:知乎著作权归作者所有.商业转载请联系作者获得授权, ...

  2. pytorch中torch.nn构建神经网络的不同层的含义

    主要是参考这里,写的很好PyTorch 入门实战(四)--利用Torch.nn构建卷积神经网络 卷积层nn.Con2d() 常用参数 in_channels:输入通道数 out_channels:输出 ...

  3. [pytorch笔记] torch.nn vs torch.nn.functional; model.eval() vs torch.no_grad(); nn.Sequential() vs nn.moduleList

    1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和n ...

  4. pytorch中的nn.CrossEntropyLoss()

    nn.CrossEntropyLoss()这个损失函数和我们普通说的交叉熵还是有些区别 x是模型生成的结果,class是对应的label 具体代码可参见如下 import torch import t ...

  5. Pytorch并行计算:nn.parallel.replicate, scatter, gather, parallel_apply

    import torch import torch.nn as nn import ipdb class DataParallelModel(nn.Module): def __init__(self ...

  6. pytorch函数之nn.Linear

    class torch.nn.Linear(in_features,out_features,bias = True )[来源] 对传入数据应用线性变换:y = A x+ b 参数: in_featu ...

  7. pytorch 损失函数(nn.BCELoss 和 nn.CrossEntropyLoss)(思考多标签分类问题)

    一.BCELoss 二分类损失函数 输入维度为(n, ), 输出维度为(n, ) 如果说要预测二分类值为1的概率,则建议用该函数! 输入比如是3维,则每一个应该是在0--1区间内(随意通常配合sigm ...

  8. 深度学习之PyTorch实战(2)——神经网络模型搭建和参数优化

    上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习. 接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效. ...

  9. [PyTorch入门]之从示例中学习PyTorch

    Learning PyTorch with examples 来自这里. 本教程通过自包含的示例来介绍PyTorch的基本概念. PyTorch的核心是两个主要功能: 可在GPU上运行的,类似于num ...

随机推荐

  1. touchstart和click 自动区分

    var clickEvent = (function() { if ('ontouchstart' in document.documentElement === true) return 'touc ...

  2. ASP.NET Core搭建多层网站架构【13-扩展之支持全球化和本地化多语言】

    2020/02/03, ASP.NET Core 3.1, VS2019, ResXManager 摘要:基于ASP.NET Core 3.1 WebApi搭建后端多层网站架构[13-扩展之支持全球化 ...

  3. jquery发送请求的各种方法

    地址链接:https://www.cnblogs.com/java-dyb/p/10910566.html 关于向服务器传递数据的一些补充: json字符串与json对象之间的转换: JSON.par ...

  4. Python的基础知识,不同于其他编程语言

    1.字符串拼接可以不使用+号 name = "this " "is " "a " "string" 2.使用''' ‘’ ...

  5. 吴裕雄--天生自然Numpy库学习笔记:Numpy 数组操作

    import numpy as np a = np.arange(8) print ('原始数组:') print (a) print ('\n') b = a.reshape(4,2) print ...

  6. Java 数据脱敏 工具类

    一.项目导入Apache的commons的Jar包. Jar包Maven下载地址:https://mvnrepository.com/artifact/org.apache.commons/commo ...

  7. java程序设计课期中考试——数据库的增删改查和简单的js界面

    首先是设计思路,对于数据库的增删改查,我们借助Ecilipse来进行前端和后端的编写.Ecilipse是可以进行java web项目的操作的. 前端,我们选择用使用jsp,所谓的jsp就是可以嵌入其他 ...

  8. svn检出两种方式的区别

    第一种是“做为新项目检出,并使用新建项目向导进行配置(仅当资源库中不存在.project工程文件时才可用,意思是如果代码库中有了这个工程文件,那么它就认为这是一个信息完整的工程,在导入的过程中就不需要 ...

  9. Update(Stage4):spark_rdd算子:第2节 RDD_action算子_分区_缓存:缓存、Checkpoint

    4. 缓存 概要 缓存的意义 缓存相关的 API 缓存级别以及最佳实践 4.1. 缓存的意义 使用缓存的原因 - 多次使用 RDD 需求: 在日志文件中找到访问次数最少的 IP 和访问次数最多的 IP ...

  10. 【PAT甲级】1039 Course List for Student (25 分)(vector嵌套于map,段错误原因未知)

    题意: 输入两个正整数N和K(N<=40000,K<=2500),分别为学生和课程的数量.接下来输入K门课的信息,先输入每门课的ID再输入有多少学生选了这门课,接下来输入学生们的ID.最后 ...