题意

给\(2n\)个物品,分别有\(a,b\)属性,对于\(i=1...n\),选择\(i\)个\(a\)属性和\(i\)个\(b\)属性,且每个物品只能作为一种属性的贡献,求最小的值。

分析

  • 看了题解补了两天... 应该叫做可反悔的贪心,或者其实就是网络流?不过因为是特殊的图,所以可以用优先队列来优化。
  • 维护四个优先队列,分别是未使用的\(a\)属性,未使用的\(b\)属性,已使用的\(a\)属性转化为\(b\)属性的花费,已使用的\(b\)属性转化为\(a\)属性的花费。
  • 对一般情况,每次取出最小\(a\)属性,取出最小\(b\)属性转化为\(a\)属性的花费,以及最小的\(b\)属性,判断哪种策略更优,对\(b\)属性同理。
  • 很多细节需要注意
    • 相同属性值,选择后反悔成另一种属性的花费更小的优先(无需绝对值)。比如(3,2)比(3,4)优先。
    • 两种策略的花费相同时,选择直接取出的策略,因为另一种策略需要从另一种最小堆中取出一个元素,使得堆顶元素变大。
    • 在前两个最小堆中取元素时需要判断取出元素是否已访问过。
    • 进行反悔的元素需要将花费取反然后放到另一个反悔队列里面去。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=5e5+50;
struct node{
int id;
ll val,sec;
bool operator <(const node& rhs)const{
if(val!=rhs.val){
return val>rhs.val;
}else{
return sec-val>rhs.sec-rhs.val;
}
}
};
priority_queue<node> lc,dn,ltd,dtl;
int n,vis[N];
ll l[N],d[N];
int main(){
// freopen("in.txt","r",stdin);
scanf("%d",&n);
for(int i=1;i<=2*n;i++){
scanf("%lld%lld",&l[i],&d[i]);
lc.push(node{i,l[i],d[i]});
dn.push(node{i,d[i],l[i]});
}
ll ans=0;
for(int i=1;i<=n;i++){
while(!lc.empty() && vis[lc.top().id]){
lc.pop();
}
if(lc.empty()){
auto t=dtl.top();
dtl.pop();
ans+=t.val;
auto g=dn.top();
dn.pop();
ans+=g.val;
ltd.push(node{t.id,d[t.id]-l[t.id]});
dtl.push(node{g.id,l[g.id]-d[g.id],0});
}else{
auto a=lc.top();
while(vis[a.id]){
lc.pop();
a=lc.top();
}
while(!dn.empty() && vis[dn.top().id]){
dn.pop();
}
if(dtl.empty() || dn.empty()){
ans+=a.val;
lc.pop();
vis[a.id]=1;
ltd.push(node{a.id,d[a.id]-l[a.id],0});
}else{
auto b=dtl.top();
auto c=dn.top();
if(a.val<=b.val+c.val){
ans+=a.val;
lc.pop();
vis[a.id]=1;
ltd.push(node{a.id,d[a.id]-l[a.id],0});
}else{
ans+=b.val+c.val;
dtl.pop();
dn.pop();
vis[c.id]=1;
ltd.push(node{b.id,d[b.id]-l[b.id],0});
dtl.push(node{c.id,l[c.id]-d[c.id],0});
}
}
}
while(!dn.empty() && vis[dn.top().id]){
dn.pop();
}
if(dn.empty()){
auto t=ltd.top();
ltd.pop();
ans+=t.val;
auto g=lc.top();
lc.pop();
ans+=g.val;
dtl.push(node{t.id,l[t.id]-d[t.id],0});
ltd.push(node{g.id,d[g.id]-l[g.id],0});
}else{
auto a=dn.top();
while(vis[a.id]){
dn.pop();
a=dn.top();
}
while(!lc.empty() && vis[lc.top().id]){
lc.pop();
}
if(ltd.empty() || lc.empty()){
ans+=a.val;
dn.pop();
vis[a.id]=1;
dtl.push(node{a.id,l[a.id]-d[a.id],0});
}else{
auto b=ltd.top();
auto c=lc.top();
if(a.val<=b.val+c.val){
ans+=a.val;
dn.pop();
vis[a.id]=1;
dtl.push(node{a.id,l[a.id]-d[a.id],0});
}else{
ans+=b.val+c.val;
ltd.pop();
lc.pop();
vis[c.id]=1;
dtl.push(node{b.id,l[b.id]-d[b.id],0});
ltd.push(node{c.id,d[c.id]-l[c.id],0});
}
}
}
printf("%lld\n",ans);
}
return 0;
}

gym102201E_Eat Economically的更多相关文章

  1. Why Countries Succeed and Fail Economically

    Countries Succeed and Fail Economically(第一部分)" title="Why Countries Succeed and Fail Econo ...

  2. Doherty Threshold

    Prior to the publication of the IBM technical paper behind what commonly known today as the Doherty ...

  3. Manifesto of the Communist Party

    A spectre is haunting Europe – the spectre of communism. All the powers of old Europe have entered i ...

  4. Toward Scalable Systems for Big Data Analytics: A Technology Tutorial (I - III)

    ABSTRACT Recent technological advancement have led to a deluge of data from distinctive domains (e.g ...

  5. 摘要评注The Cathedral & The Bazaar

    2013年暑期买到这本书,距离其第一版已经有14年之久,而最早发布在互联网上的文章更是早在1997年.在我阅读的时候,很多事迹已经沉积为历史,很多预言已经成为现实.而这本书的意义却丝毫没有因此淡化,反 ...

  6. English substitute

    英语写作中替换掉用到发腻的↓常用词↓,吐血整理2小时~~   动词替换:   1.Improve 提高:   Promote: 促进AC之间的贸易 promote the trade between ...

  7. How to Write Doc Comments for the Javadoc Tool

    http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html This document describe ...

  8. 越狱Season 1-Episode 6: Riots, Drills and the Devil: Part 1

    Season 1, Episode 6: Riots, Drills and the Devil: Part 1 - Diamond: Just a few more rides. 就再多玩几次吧 O ...

  9. Regionals 2013 :: North America - Southeast USA

    Regionals 2013 :: North America - Southeast USA It Takes a Village As a Sociologist, you are studyin ...

随机推荐

  1. 详解golang net之transport

    关于golang http transport的讲解,网上有很多文章读它进行了描述,但很多文章讲的都比较粗,很多代码实现并没有讲清楚.故给出更加详细的实现说明.整体看下来细节实现层面还是比较难懂的. ...

  2. CodeForces 1058E

    题意略. 思路:本题有两个关键点: 一.满足题设的区间条件 1.区间内1的个数和为偶数 2.区间内含1个数最多的那一项,它所含1的个数不得超过区间内1的个数和的一半. 二.长度超过60的区间必然满足上 ...

  3. d3.js 教程 模仿echarts柱状图

    由于最近工作不是很忙,隧由把之前的charts项目用d3.js重写的一下,其实d3.js文档很多,但是入门不是很难,可是想真的能做一个完成的,交互良好的图还是要下一番功夫的.今天在echarts找到了 ...

  4. c++并查集配合STL MAP的实现(洛谷P2814题解)

    不会并查集的话请将此文与我以前写的并查集一同食用. 原题来自洛谷 原题 文字稿在此: 题目背景 现代的人对于本家族血统越来越感兴趣. 题目描述 给出充足的父子关系,请你编写程序找到某个人的最早的祖先. ...

  5. P3355 骑士共存问题 二分建图 + 当前弧优化dinic

    P3355 骑士共存问题 题意: 也是一个棋盘,规则是“马”不能相互打到. 思路: 奇偶点分开,二分图建图,这道题要注意每个点可以跑八个方向,两边都可以跑,所以边 = 20 * n * n. 然后di ...

  6. POJ-2253-Frogger +最短路小变形

    传送门:http://poj.org/problem?id=2253 参考:https://www.cnblogs.com/lienus/p/4273159.html 题意:给出一个无向图,求一条从 ...

  7. hdu 3265 Posters(线段树+扫描线+面积并)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3265 题意:给你一张挖了洞的墙纸贴在墙上,问你总面积有多少. 挖了洞后其实就是多了几个矩形墙纸,一张墙 ...

  8. 【Nginx】基础学习概览【汇总】

    一.Nginx 简介安装启动 二.Nginx的应用场景 三.Nginx中的配置命令 四.实现动态负载均衡 五.四层负载均衡 六.主从热备 七.动静分离 一.Nginx 简介安装启动 [Nginx]简介 ...

  9. 【Nginx】实现动静分离

    一.概述 1.1 动态页面与静态页面区别 1.2 什么是动静分离 1.3 为什么要用动静分离 二.Nginx实现动静分离 2.1 架构分析 2.2 配置 三.动静分离与前后分离区别: 四.一些问题 一 ...

  10. 【Offer】[36] 【二叉搜索树与双向链表】

    题目描述 思路分析 测试用例 Java代码 代码链接 题目描述 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的节点,只能调整树中节点指针的指向.比如,输入下图中左边的 ...