老年选手只会做SB题了(还调了好久)

很容易想到分类讨论,按第\(i\)个人有没有翻倍来算

若\(a_i\)未翻倍,显然此时将\([0,\lceil \frac{a_i}{2}\rceil)\)的数和\([a_i,\infty)\)的数翻倍都可以,记它们的个数为\(x\),则贡献为\(C_x^k\)

若\(a_i\)翻倍了,此时我们要算出\(i\)的排名变化了多少,记为\(dlt\)。然后在\([a_i,2a_i)\)之间的数翻倍之后都是会超过\(2a_i\)的,记为\(x\),因此这部分就是\(C_x^{dlt}\)。

然后此时还剩下\(k-1-dlt\)次操作,显然在\(a_i\)翻倍成\(2a_i\)之后,\([0,a_i)\)与\([2a_i,\infty]\)的数翻不翻倍都不影响答案,记个数为\(y\),贡献还要乘上\(C_y^{k-1-dlt}\)

具体实现的时候可以离散化之后对值等于某个数的所有位置一起讨论

#include<cstdio>
#include<algorithm>
#define RI int
#define CI const int&
using namespace std;
const int N=100005,mod=998244353;
int n,k,a[N],rst[N],pfx[N],suf[N],id[N],ans[N],num,fact[N],inv[N];
inline void inc(int& x,CI y)
{
if ((x+=y)>=mod) x-=mod;
}
inline int quick_pow(int x,int p=mod-2,int mul=1)
{
for (;p;p>>=1,x=1LL*x*x%mod) if (p&1) mul=1LL*mul*x%mod; return mul;
}
inline void init(CI n)
{
RI i; for (fact[0]=i=1;i<=n;++i) fact[i]=1LL*fact[i-1]*i%mod;
for (inv[n]=quick_pow(fact[n]),i=n-1;~i;--i) inv[i]=1LL*inv[i+1]*(i+1)%mod;
}
inline int C(CI n,CI m)
{
if (n<0||m<0) return 0; if (m==0) return 1; if (n<m) return 0;
return 1LL*fact[n]*inv[m]%mod*inv[n-m]%mod;
}
inline int GB(CI x) //>=x
{
return lower_bound(rst+1,rst+num+1,x)-rst;
}
inline int LB(CI x) //<=x
{
return upper_bound(rst+1,rst+num+1,x)-rst-1;
}
int main()
{
RI i; for (scanf("%d%d",&n,&k),i=1;i<=n;++i) scanf("%d",&a[i]),rst[i]=a[i];
rst[n+2]=1e9+1; sort(rst+1,rst+n+3); num=unique(rst+1,rst+n+3)-rst-1;
for (i=1;i<=n;++i) ++pfx[id[i]=GB(a[i])],++suf[id[i]];
for (i=num-1;i;--i) suf[i]+=suf[i+1]; for (i=2;i<=num;++i) pfx[i]+=pfx[i-1];
for (init(n),i=1;i<num;++i)
{
if (!rst[i]) { ans[i]=C(n,k); continue; }
int ls=pfx[LB(rst[i]-1>>1)]; ans[i]=C(suf[i]-1+ls,k);
int c=suf[GB(rst[i]<<1)],dlt=suf[i]-c-1,lt=pfx[LB(rst[i]-1)];
inc(ans[i],1LL*C(pfx[LB((rst[i]<<1)-1)]-lt-1,dlt)*C(c+lt,k-dlt-1)%mod);
}
for (i=1;i<=n;++i) printf("%d\n",ans[id[i]]); return 0;
}

Luogu P5368 [PKUSC2018]真实排名的更多相关文章

  1. 「Luogu P5368 [PKUSC2018]真实排名」

    PKUSC签到题 题目大意 给出一个长度为 \(N\) 的序列,序列中有 \(K\) 个数会乘二,对于每个数计算在乘二后大于等于这个数的个数与乘二前没有发生变化的方案数. 分析 思路很清晰,可以将答案 ...

  2. 【LOJ4632】[PKUSC2018]真实排名

    [LOJ4632][PKUSC2018]真实排名 题面 终于有题面啦!!! 题目描述 小 C 是某知名比赛的组织者,该比赛一共有 \(n\) 名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排 ...

  3. [PKUSC2018]真实排名

    [PKUSC2018]真实排名 题目大意: 有\(n(n\le10^5)\)个人,每个人有一个成绩\(A_i(0\le A_i\le10^9)\).定义一个人的排名为\(n\)个人中成绩不小于他的总人 ...

  4. BZOJ_5368_[Pkusc2018]真实排名_组合数

    BZOJ_5368_[Pkusc2018]真实排名_组合数 Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他 ...

  5. [PKUSC2018]真实排名——线段树+组合数

    题目链接: [PKUSC2018]真实排名 对于每个数$val$分两种情况讨论: 1.当$val$不翻倍时,那么可以翻倍的是权值比$\frac{val-1}{2}$小的和大于等于$val$的. 2.当 ...

  6. bzoj5368 [Pkusc2018]真实排名

    题目描述: bz luogu 题解: 组合数计数问题. 首先注意排名指的是成绩不小于他的选手的数量(包括他自己). 考虑怎么增大才能改变排名. 小学生都知道,对于成绩为$x$的人,让他自己不动并让$\ ...

  7. BZOJ5368:[PKUSC2018]真实排名(组合数学)

    Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他的选手的数量(包括他自己). 例如如果333位选手的成绩分别 ...

  8. bzoj 5368: [Pkusc2018]真实排名

    Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是 :成绩不小于他的选手的数量(包括他自己).例如如果3位选手的成绩分别是[ ...

  9. 【洛谷5368】[PKUSC2018] 真实排名(组合数学)

    点此看题面 大致题意: 有\(n\)个数字,定义一个数的排名为不小于它的数的个数.现要随机将其中\(k\)个数乘\(2\),求对于每个数有多少种方案使其排名不变. 分类讨论 对于这种题目,我们可以分类 ...

随机推荐

  1. [转]UiPath Keyboard Shortcuts

    本文转自:https://docs.uipath.com/studio/docs/keyboard-shortcuts The complete list of keyboard shortcuts ...

  2. Android微信九宫格图片展示控件

    版权声明:本文为xing_star原创文章,转载请注明出处! 本文同步自http://javaexception.com/archives/214 Android微信九宫格图片展示控件 半年前,公司产 ...

  3. Linux系统学习 十二、VSFTP服务—简介与原理

    1.简介与原理 互联网诞生之初就存在三大服务:WWW.FTP.邮件 FTP主要针对企业级,可以设置权限,对不同等级的资料针对不同权限人员显示. 但是像网盘这样的基本没有权限划分. 简介: FTP(Fi ...

  4. python中json与pickle的简要说明

    import json    ======> 注意:不同语言之间通用但不能传输对象类型 该模块中最重要的方法: 1.json.dump(‘python数据’,‘json文件’)   # 将pyt ...

  5. 2019年全国高校计算机能力挑战赛 C语言程序设计决赛

    2019年全国高校计算机能力挑战赛 C语言程序设计决赛 毕竟这个比赛是第一次举办,能理解.. 希望未来再举办时,能够再完善一下题面表述.数据范围. 话说区域赛获奖名额有点少吧.舍友花60块想混个创新创 ...

  6. Java之线程安全

    什么是线程安全? 如果有多个线程在同时运行,而这些线程可能会同时运行这段代码.程序每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的. 什么是线程安全问题? ...

  7. [译]Vulkan教程(29)组合的Image采样器

    [译]Vulkan教程(29)组合的Image采样器 Combined image sampler 组合的image采样器 Introduction 入门 We looked at descripto ...

  8. Swoole编译安装步骤

    Swoole扩展是按照php标准扩展构建的.使用phpize来生成php编译配置,./configure来做编译配置检测,make进行编译,make install进行安装. 请下载releases版 ...

  9. IT兄弟连 HTML5教程 HTML5文字版面和编辑标签 小结及试题

    小结 HTML标签包含结构标签和基础标签,基础标签是在页面制作最常使用的一些标签.基础标签包含标题标签(<h1>~<h6>).换行标签(<br>).段落标签(< ...

  10. CSS权重的进制问题

    这是复习篇的第一个知识点,(CSS权重进制在IE6为256,后来扩大到了65536.而现代浏览器则采用更大的数量)在说这个知识点之前我们先来看一个例子 <!DOCTYPE html> &l ...