在本节学习中,我们使用Seaborn作为数据可视化的入门工具

Seaborn的官方网址如下:http://seaborn.pydata.org

一:definition

Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics.

Seaborn是基于matplotlib的数据可视化库,它的主要功能是做数据可视化

二:Setup the notebook

对数据进行初始化,引入相应的包

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

import seaborn as sns

pirnt("Setup Complete")

三: Load the data

加载数据

file_path = "../input/fifa.csv"

fifa_data = pd.read_csv(file_path, index_col="Date", parse_Dates=True)

注:

file_path:

表示dataset的路径

idnex_col="Date" :

When we load the dataset, we want each entry in the first column to denote a different row. To do this, we set the value of index_col to the name of the first column ("Date", found in cell A1 of the file when it's opened in Excel).

parse_dates=True:

This tells the notebook to understand the each row label as a date (as opposed to a number or other text with a different meaning).

四: Examine the data

列出数据的前5行检验:

fifa_data.head()

五: Plot the data

  • Line Chart

  plt.figure(figsize=(16,6))

  sns.lineplot(data=fifa_data)

注:

plt.figure(figsize=(16,6))

设定的是图形的宽度和高度

plt.title("name") 增加title,并命名为name

sns.lineplot(data=fifa_data)画出数据的线状图

若想plot a subset of the data (仅仅画出一部分图线):

sns.lineplot(data=spotify["shape of you"],label=shape of you")

sns.lineplot(data=spotify["despacito"], label="despatito")

plt.xlabel("name X")

plt.blabel("name Y")

注:

plt.xlabel

plt.ylabel

是分别对label x, y 进行命名

  • Bar Charts

  plt.title("Average Arrival Delay for Spirit Airlines Flights, by Month")

  sns.barplot(x=flight_data.index, y=flight_data['NK'])

  plt.ylabel("Arrival delay (in minutes)"

注:

x=flight_data.index :

This determines what to use on the horizontal axis. In this case, we have selected the column that indexes the rows (in this case, the column containing the months).

  • Heat Maps

  plt.figure(figsize=(16,6))

  plt.title("Average Arrival Delay for Each Airline, by Month")

  sns.heatmap(data=flight_data,annot=True)

  plt.xlabel("Airline")

注:

sns.heatmap:

This tells the notebook that we want to create a heatmap.

data=flight_data:

This tells the notebook to use all of the entries in flight_data to create the heatmap

annot=Ture:

This ensures that the vlaues for each cell appear on the chart.

  • Scatter plots

  

(1)  sns.scatterplot (x=insurance_data['bmi'], y=insurance_data['charges'])

注:

the horizontal x-axis (x=insurance_data['bmi'])

the vertical y-axis (y=insurance_data['charges'])

(2)  为了看出点的关系强度,可以使用regression line(回归线)

    

    sns.regplot(x=insurance_data['bmi'], y=insurance_data['charges'])

(3)  sns.scatterplot(x=insurance_data['bmi'], y=insurance_data['charges'], hue=insurance_data['smoker'])

   hue=insurance_data['smoker']:按照hue来对数据进行标色

  • Histograms

   sns.distplot(a=iris_data['Petal Length (cm)'], kde=False)

  • Density plots

  更平滑的图:

  sns.kdeplot(data=iris_data['Petal Length(cm)'], shade=True)

六:Conclusion 

下图显示,在seaborn中,选择图形需要根据需求来决定

Seaborn数据可视化入门的更多相关文章

  1. 数据可视化入门之show me the numbers

           数据的可视化一直是自己瞎玩着学,近来想系统的学数据可视化的东西,于是搜索资料时看到有人推荐<show me the numbers>作为入门. 由于搜不到具体的书籍内容,只能 ...

  2. seaborn 数据可视化(一)连续型变量可视化

    一.综述 Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,图像也更加美观,本文基于seaborn官方API还有自己的一些理解.   1.1.样式控制: ...

  3. python学习笔记(2):科学计算及数据可视化入门

    一.NumPy 1.NumPy:Numberical Python 2.高性能科学计算和数据分析的基础包 3.ndarray,多维数组(矩阵),具有矢量运算的能力,快速.节省空间 (1)ndarray ...

  4. seaborn 数据可视化(二)带有类别属性的数据可视化

    Seaborn的分类图分为三类,将分类变量每个级别的每个观察结果显示出来,显示每个观察分布的抽象表示,以及应用统计估计显示的权重趋势和置信区间: 第一个包括函数swarmplot()和stripplo ...

  5. PoPo数据可视化周刊第4期

    PoPo数据可视化 聚焦于Web数据可视化与可视化交互领域,发现可视化领域有意思的内容.不想错过可视化领域的精彩内容, 就快快关注我们吧 :) 微信号:popodv_com   由于国庆节的原因,累计 ...

  6. Python数据可视化-seaborn库之countplot

    在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效. seaborn官方文档见链接:http://seaborn.pydata.org/api.html countplot是s ...

  7. kaggle入门项目:Titanic存亡预测(三)数据可视化与统计分析

    ---恢复内容开始--- 原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Ach ...

  8. 数据可视化 seaborn绘图(1)

    seaborn是基于matplotlib的数据可视化库.提供更高层的抽象接口.绘图效果也更好. 用seaborn探索数据分布 绘制单变量分布 绘制二变量分布 成对的数据关系可视化 绘制单变量分布 se ...

  9. Python图表数据可视化Seaborn:3. 线性关系数据| 时间线图表| 热图

    1. 线性关系数据可视化 lmplot( ) import numpy as np import pandas as pd import matplotlib.pyplot as plt import ...

随机推荐

  1. C语言数组排序——冒泡排序、选择排序、插入排序

    一.冒泡排序 原理解析:(以从小到大排序为例)在一排数字中,将第一个与第二个比较大小,如果后面的数比前面的小,则交换他们的位置. 然后比较第二.第三个……直到比较第n-1个和第n个,此时,每一次比较都 ...

  2. 给你的SpringBoot做埋点监控--JVM应用度量框架Micrometer

    JVM应用度量框架Micrometer实战 前提 spring-actuator做度量统计收集,使用Prometheus(普罗米修斯)进行数据收集,Grafana(增强ui)进行数据展示,用于监控生成 ...

  3. TensorFlow Data模块

    模块作用 tf.data api用于创建训练前导入数据和数据处理的pipeline,使得处理大规模数据,不同数据格式和复杂数据处理变的容易. 基本抽象 提供了两种基本抽象:Dataset和Iterat ...

  4. Zookeeper_阅读源码第一步_在 IDE 里启动 zkServer(单机版)

    Zookeeper是开源的,如果想多了解Zookeeper或看它的源码,最好是能找到它的源码并在 IDE 里启动,可以debug看它咋执行的,能够帮助你理解其原理. 准备源码 所以我们很容易搞到它的源 ...

  5. k8s学习笔记

    9.deployment:声明式的升级应用 9.1.使用RC实现滚动升级 #kubectl rolling-update kubia-v1 kubia-v2 --image=luksa/kubia:v ...

  6. Unity进阶之ET网络游戏开发框架 03-Hotfix层启动

    版权申明: 本文原创首发于以下网站: 博客园『优梦创客』的空间:https://www.cnblogs.com/raymondking123 优梦创客的官方博客:https://91make.top ...

  7. react中babel的使用

    在开发中经常会使用到es6语法,那么如何能够很好兼容es6写法呢

  8. Ubuntu Server : 自动更新

    Ubuntu(16.04/18.04) 默认会每天自动安装系统的安全更新,但是不会自动安装包的更新.本文梳理 Ubuntu 16.04/18.04 系统的自动更新机制,并介绍如何配置系统自动更新所有的 ...

  9. Zabbix遇到的问题集锦

    一.Web界面上显示Zabbix server is not running 二.Zabbix显示中文字体 三.利用Python发送告警注意细节 四.zabbix上发告警信息不发恢复信息 五.Agen ...

  10. 记录一次Jquery中 this 关键字使用出现的问题

    今天在用Jquery改造之前的JS代码过程中,遇到了一个让我懵逼了三小时的问题. 问题的关键在 this 的使用.在这里与大家分享一下.并且分享一下我做表单提交的检查代码 错误代码如下: $(&quo ...