[算法模版]Tarjan爷爷的几种图论算法
[算法模版]Tarjan爷爷的几种图论算法
前言
Tarjan爷爷发明了很多图论算法,这些图论算法有很多相似之处(其中一个就是我都不会)。这里会对这三种算法进行简单介绍。
定义
强连通(strongly connected): 在一个有向图\(G\)里,设两个点a, b 发现,由\(a\)有一条路可以走到\(b\),由\(b\)又有一条路可以走到\(a\),我们就叫这两个顶点(a,b)强连通。
强连通图: 如果 在一个有向图\(G\)中,每两个点都强连通,我们就叫这个图,强连通图。
分量:把一个向量分解成几个方向的向量的和,那些方向上的向量就叫做该向量(未分解前的向量)的分量。
强连通分量(strongly connected components/SCC):在一个有向图G中,有一个子图,这个子图每2个点都满足强连通,我们就叫这个子图叫做强连通分量。

比如说这个图,在这个图中呢,点1与点2互相都有路径到达对方,所以它们强连通。
而在这个有向图中,点1 2 3组成的这个子图,是整个有向图中的强连通分量。
dfn[i]:指第\(i\)个点的\(dfs\)序。
low[i]:指第\(i\)个点的子树内的所有点通过反祖边能走到的点的\(dfn\)的最小值。
先行结论
- 在一个无向图上,跑一棵生成树。可以证明非树边只有反祖边,没有横叉边。
Tarjan算法求割点/割边(针对无向图)
割点
首先,一个比较显然的结论就是所有的叶子结点和根节点都不是割点。对于其他节点u来说,只要有至少一个儿子v满足low[u]>=dfn[v],就证明v若不通过他父亲就回不去。那这个点就是割点。根节点只需要判断是不是有两棵子树就好了。实现起来可以当作有两个点满足low[u]>=dfn[b]。因为因为根节点\(dfn\)为1,所以一定满足条件。如果两个根结点儿子不通过根节点就能联通,那么他们一定在一个子树。
void tarjan(int now,int ff){
low[now]=dfn[now]=++idx;
for(int i=head[now];i;i=side[i].next){
int v=side[i].v;
if(side[i].id==ff)continue;
if(!dfn[v]){
tarjan(v,side[i].id);
low[now]=min(low[now],low[v]);
if(low[v]>=dfn[now]){ans[now]++;}
}
else{
low[now]=min(dfn[v],low[now]);
}
}
return;
}
void output(){
for(int i=1;i<=n;i++){
if((ans[i]&&!root[i])||(ans[i]>=2&&root[i])){
cout<<i<<' ';//输出所有割点
}
}
}
割边
和割点基本一样。只需要把\(low[v]>=dfn[u]\)改成\(low[v]>dfn[u]\)即可。同时需要判断,不能再次走刚刚走过的边。
如果点u的至少一个儿子v满足low[v]>dfn[u]。就证明不通过这条边无法走到上面。所以这是条割边。
Tarjan算法求点双/边双(针对无向图)
边双
和楼下的强连通分量很像,唯一的区别就是需要特殊判断一下,不能通过从父亲下来的那条边走上去。(因为强连通分量是有向图,走不上去,所以不存在这个问题)
实现起来也很简单,只用简单修改一下dfs函数:
dfs(u,f)其中u为当前节点,f为走到这个点通过的边的编号。
当在遍历u的所有边试图向下dfs时,只需要加一个if(现在准备选择的边的编号==f)continue;即可。
点双
咕咕咕
Tarjan算法求强连通分量(针对有向图)
stack<int> tp;
void dfs(int u)
{
dfn[u]=low[u]=++cnt1;//初始化每个未访问过的节点
tp.push(u);
for(int i=head[u];i;i=side[i].next)
{
int v=side[i].v;
if(!dfn[v])dfs(v),low[u]=min(low[u],low[v]);
else if(!scc[v])low[u]=min(low[u],dfn[v]);//被访问过却没有SCC编号(在栈里),证明在同一个强连通分量。因为栈维护的是一条有一个节点到它儿子的路径。所以如果栈顶的点u到栈中任意一点v有边。就证明存在u到v的一个环。
}
if(dfn[u]==low[u])//如果这个点是它所在强连通分量中dfn最小的,则有它来承担输出整个SCC的任务
{
int s=tp.top(),id=++cnt2;tp.pop();
scc[s]=id;
while(s!=u)s=tp.top(),tp.pop(),scc[s]=id;
}
}
参考资料

[算法模版]Tarjan爷爷的几种图论算法的更多相关文章
- java开发过程中几种常用算法
排序算法 排序算法中包括:简单排序.高级排序 简单排序 简单排序常用的有:冒泡排序.选择排序.插入排序 冒泡排序代码如下: private static void bubbleSrot(int[] a ...
- Java 的八种排序算法
Java 的八种排序算法 这个世界,需要遗忘的太多. 背景:工作三年,算法一问三不知. 一.八种排序算法 直接插入排序.希尔排序.简单选择排序.堆排序.冒泡排序.快速排序.归并排序和基数排序. 二.算 ...
- 图论算法-Tarjan模板 【缩点;割顶;双连通分量】
图论算法-Tarjan模板 [缩点:割顶:双连通分量] 为小伙伴们总结的Tarjan三大算法 Tarjan缩点(求强连通分量) int n; int low[100010],dfn[100010]; ...
- 图论算法》关于tarjan算法两三事
关于tarjan,在下觉得这个算法从本质上是一种暴力求强连通分量的方法,但事实上这也是最有效的求强连通分量的方法之一,它对于处理各种强连通分量中奇怪问题,都可以直接转化,所以比较通用和常见. 什么是t ...
- tarjan图论算法
tarjan图论算法 标签: tarjan 图论 模板 洛谷P3387 [模板]缩点 算法:Tarjan有向图强连通分量+缩点+DAGdp 代码: #include <cstdio> #i ...
- LCA算法解析-Tarjan&倍增&RMQ
原文链接http://www.cnblogs.com/zhouzhendong/p/7256007.html UPD(2018-5-13) : 细节修改以及使用了Latex代码,公式更加美观.改的过程 ...
- Kosaraju算法、Tarjan算法分析及证明--强连通分量的线性算法
一.背景介绍 强连通分量是有向图中的一个子图,在该子图中,所有的节点都可以沿着某条路径访问其他节点.强连通性是一种非常重要的等价抽象,因为它满足 自反性:顶点V和它本身是强连通的 对称性:如果顶点V和 ...
- 对比几种在ROS中常用的几种SLAM算法
在此因为要总结写一个文档,所以查阅资料,将总结的内容记录下来,欢迎大家指正! 文章将介绍使用的基于机器人操作系统(ROS)框架工作的SLAM算法. 在ROS中提供的五种基于2D激光的SLAM算法分别是 ...
- JVM的分区+查看GC对象是否存活+3种GC算法+7种垃圾收集器+如何减少GC次数
一.JVM的分区: 1.程序计数器(私有) 程序计数器是一块较小的内存分区,你可以把它看做当前线程所执行的字节码的指示器. 在虚拟机的概念模型里,字节码解释器工作时,就是通过改变计数器的值来选择下 ...
随机推荐
- go get 获取被墙依赖包解决方法
前言: 随着 go1.11 的发布,go 官方引入了 go module 来解决依赖管理问题,go module 被集成到原生的 go cmd 中,但是如果你的代码库在$GOPATH中,go1.11 ...
- keras RAdam优化器使用教程, keras加载模型包含自定义优化器报错 如何解决?
本文首发于个人博客https://kezunlin.me/post/c691f02b/,欢迎阅读最新内容! python keras RAdam tutorial and load custom op ...
- Linux常用命令之网络命令
write命令 write命令用于向指定登录用户终端上发送信息.通过write命令可传递信息给另一位登入系统的用户,当输入完毕后,键入EOF表示信息结束,write命令就会将信息传给对方.如果接收信息 ...
- Nginx反向代理及负载均衡介绍
Nginx的产生 没有听过Nginx?那么一定听过它的"同行"Apache吧!Nginx同Apache一样都是一种WEB服务器.基于REST架构风格,以统一资源描述符(Unifor ...
- 知识图谱辅助金融领域NLP任务
从人工智能学科诞生之初起,自然语言处理(NLP)就是人工智能核心的研究问题之一.NLP的重要性是毋庸置疑的,它能够实现以自然语言交流为特征的高级人机交互,使机器能“阅读”所有以文字形式记录的人类知识, ...
- 数据库——SQL-SERVER练习(2)连接与子查询
一.实验准备 1.复制实验要求文件及“CREATE-TABLES.SQL”文件, 粘贴到本地机桌面. 2.启动SQL-SERVER服务. 3. 运行查询分析器, 点击菜单<文件>/< ...
- 用Python在Excel里画出蒙娜丽莎
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 麦麦麦造 PS:如有需要Python学习资料的小伙伴可以加点击下方链 ...
- FCC---Create Movement Using CSS Animation---设计一个盒子上下左右移动,结合animation, @keyframe, position (上下左右的offset)
When elements have a specified position, such as fixed or relative, the CSS offset properties right, ...
- Java --Lamda表达式
Lamda:属于函数式编程的概念: interface IMessage { public void print() ; } public class TestDemo { public static ...
- form分辨率
近期做项目时,遇到开发的winform在自己电脑上可以正常显示,共享到其他电脑就事儿不能显示了: [转载自:http://blog.csdn.net/lcawen88/article/details/ ...