题文:https://vjudge.net/problem/UVA-11324

题解:

  这个题目首先可以发现,只要是一个强连通分量,要么都选,要么都不选,将点权看成强连通分量的点数,所以这个题目就转化成了DAG上的最大路。

  稍微dp一下就好了。

代码:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#include <stack>
#define MAXN 50100
using namespace std;
struct edge{
int first;
int next;
int to;
}a[MAXN*];
int dfn[MAXN],in[MAXN],low[MAXN],fa[MAXN],size[MAXN];
int dp[MAXN],b[MAXN],x[MAXN],y[MAXN];
int n,m,num1=,num2=,num3=;
stack<int> s; void cl(){
memset(low,,sizeof(low));
memset(dp,,sizeof(dp));
memset(dfn,,sizeof(dfn));
memset(fa,,sizeof(fa));
memset(size,,sizeof(size));
memset(a,,sizeof(a));num1=num2=num3=;
memset(in,,sizeof(in));
memset(b,,sizeof(b));
memset(x,,sizeof(x));
memset(y,,sizeof(y));
} void addedge(int from,int to){
a[++num1].to=to;
a[num1].next=a[from].first;
a[from].first=num1;
} void init(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d%d",&x[i],&y[i]);
addedge(x[i],y[i]);
}
} void tarjian(int now){
s.push(now);in[now]=;
dfn[now]=low[now]=++num3;
for(int i=a[now].first;i;i=a[i].next){
int to=a[i].to;
if(!dfn[to]){
tarjian(to);
low[now]=min(low[now],low[to]);
}
else if(in[to]) low[now]=min(low[now],dfn[to]);
}
if(low[now]==dfn[now]){
int u=-;
num2++;
while(u!=now){
u=s.top();s.pop();in[u]=;
fa[u]=num2;
size[num2]++;
}
}
} void make(){
memset(a,,sizeof(a));num1=;
for(int i=;i<=m;i++){
if(fa[x[i]]!=fa[y[i]]) addedge(fa[x[i]],fa[y[i]]);
}
} void pre(){
while(!s.empty()) s.pop();
for(int i=;i<=n;i++) if(!dfn[i]) tarjian(i);
make();
} int DP(int now){
if(b[now]) return dp[now];
b[now]=;
dp[now]+=size[now];
for(int i=a[now].first;i;i=a[i].next){
int to=a[i].to;
dp[now]=max(dp[now],size[now]+DP(to));
}
return dp[now];
} int main()
{
int t;cin>>t;
while(t--){
cl();
init();
pre();
for(int i=;i<=n;i++) DP(i);
int ans=;
for(int i=;i<=n;i++) ans=max(ans,dp[i]);
printf("%d\n",ans);
}
return ;
}

The Largest Clique UVA - 11324的更多相关文章

  1. The Largest Clique UVA - 11324( 强连通分量 + dp最长路)

    这题  我刚开始想的是  缩点后  求出入度和出度为0 的点  然后统计个数  用总个数 减去 然而 这样是不可以的  画个图就明白了... 如果  减去度为0的点  那么最后如果出现这样的情况是不可 ...

  2. 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP)

    layout: post title: 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP) author: "luowentaoaa" catalog: true ...

  3. UVA 11324 - The Largest Clique(强连通分量+缩点)

    UVA 11324 - The Largest Clique 题目链接 题意:给定一个有向图,要求找一个集合,使得集合内随意两点(u, v)要么u能到v,要么v能到u,问最大能选几个点 思路:强连通分 ...

  4. uva 11324 The Largest Clique

    vjudge 上题目链接:uva 11324 scc + dp,根据大白书上的思路:" 同一个强连通分量中的点要么都选,要么不选.把强连通分量收缩点后得到SCC图,让每个SCC结点的权等于它 ...

  5. uva 11324 The Largest Clique(图论-tarjan,动态规划)

    Problem B: The Largest Clique Given a directed graph G, consider the following transformation. First ...

  6. UVA11324 The Largest Clique[强连通分量 缩点 DP]

    UVA - 11324 The Largest Clique 题意:求一个节点数最大的节点集,使任意两个节点至少从一个可以到另一个 同一个SCC要选一定全选 求SCC 缩点建一个新图得到一个DAG,直 ...

  7. 『题解』UVa11324 The Largest Clique

    原文地址 Problem Portal Portal1:UVa Portal2:Luogu Portal3:Vjudge Description Given a directed graph \(\t ...

  8. uva 11324

    Problem B: The Largest Clique Given a directed graph G, consider the following transformation. First ...

  9. 【UVA11324】 The Largest Clique (Tarjan+topsort/记忆化搜索)

    UVA11324 The Largest Clique 题目描述 给你一张有向图 \(G\),求一个结点数最大的结点集,使得该结点集中的任意两个结点 \(u\) 和 \(v\) 满足:要么 \(u\) ...

随机推荐

  1. 【LeetCode】62-不同路径

    题目描述 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为"Start" ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为& ...

  2. NOIP2012 D2 T3 疫情控制 洛谷P1084

    题目链接:https://www.luogu.org/problemnew/show/P1084 算法:倍增,二分答案,贪心 + 瞎搞.. 背景:上学长的数论课啥也听不懂,于是前去提高组找安慰.不巧碰 ...

  3. 拆解大数据总线平台DBus的系统架构

    Dbus所支持两类数据源的实现原理与架构拆解. 大体来说,Dbus支持两类数据源: RDBMS数据源 日志类数据源 一.RMDBMS类数据源的实现 以mysql为例子. 分为三个部分: 日志抽取模块 ...

  4. 手机端特有的meta标签有哪些?

    3.1 meta 语法 定义和用法:name 属性把 content 属性连接到 name. 语法:name=author|description|keywords|generator|revised ...

  5. Phpstudy被暴存在隐藏后门-检查方法

    Phpstudy被暴存在隐藏后门-检查方法 一.事件背景 Phpstudy软件是国内的一款免费的PHP调试环境的程序集成包,通过集成Apache.PHP.MySQL.phpMyAdmin.ZendOp ...

  6. Android嵌入式开发初学者的几个注意点

    一:首先你必须了解ARM平台 Android 移植与驱动核心开发,当然也可以是X86和其他的平台,不过其他平台的Android智能终端开发并不是很多. Android嵌入式智能操作系统是基于Linux ...

  7. 实现一个正则表达式引擎in Python(二)

    项目地址:Regex in Python 在看一下之前正则的语法的 BNF 范式 group ::= ("(" expr ")")* expr ::= fact ...

  8. 品Spring:SpringBoot发起bean定义注册的“二次攻坚战”

    上一篇文章整体非常轻松,因为在容器启动前,只注册了一个bean定义,就是SpringBoot的主类. OK,今天接着从容器的启动入手,找出剩余所有的bean定义的注册过程. 具体细节肯定会颇为复杂,同 ...

  9. FileDetail

    import org.apache.hadoop.conf.*; import org.apache.hadoop.fs.*; import java.io.IOException; import j ...

  10. Spring Data JPA 梳理 - JPA是什么

    总结: JPA是java的标准,不是Spring的标准 java标准中一般通过Meta-INF文件规范开发层面的事情,JPA也不例外,使用persistence.xml JPA定义了Entity 到 ...