51 nod 石子归并 + v2 + v3(区间dp,区间dp+平行四边形优化,GarsiaWachs算法)
题意:就是求石子归并。
题解:当范围在100左右是可以之间简单的区间dp,如果范围在1000左右就要考虑用平行四边形优化。
就是多加一个p[i][j]表示在i到j内的取最优解的位置k,注意能使用平行四边形优化的条件:
1.证明w满足四边形不等式,这里w是m的附属量,形如m[i,j]=opt{m[i,k]+m[k,j]+w[i,j]},此时大多要先证明w满足条件才能进一步证明m满足条件
2.证明m满足四边形不等式
3.证明s[i,j-1]≤s[i,j]≤s[i+1,j]
。如果在10000左右时就要用GarsiaWachs算法
推荐一个博客http://www.cnblogs.com/jiu0821/p/4493497.html
有详细解释。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int inf = 0X3f3f3f3f;
long long dp[200][200] , a[200] , sum[200];
int main() {
int n;
scanf("%d" , &n);
for(int i = 1 ; i <= n ; i++) {
scanf("%lld" , &a[i]);
}
memset(dp , inf , sizeof(dp));
for(int i = 1 ; i <= n ; i++) {
dp[i][i] = 0;
}
sum[0] = 0;
for(int i = 1 ; i <= n ; i++) {
sum[i] = sum[i - 1] + a[i];
}
for(int l = 1 ; l < n ; l++) {
for(int i = 1 ; i <= n && i + l <= n ; i++) {
int j = l + i;
for(int k = i ; k < j ; k++) {
dp[i][j] = min(dp[i][k] + dp[k + 1][j] + sum[j] - sum[i - 1] , dp[i][j]);
}
}
}
printf("%lld\n" , dp[1][n]);
return 0;
}
////////////
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int inf = 0X3f3f3f3f;
long long dp[2010][2010] , a[2010] , sum[2010] ;
int p[2010][2010];
int main() {
int n;
scanf("%d" , &n);
for(int i = 1 ; i <= n ; i++) {
scanf("%lld" , &a[i]);
}
memset(dp , inf , sizeof(dp));
for(int i = 1 ; i <= 2 * n ; i++) {
dp[i][i] = 0;
p[i][i] = i;
}
sum[0] = 0;
for(int i = n + 1 ; i <= 2 * n ; i++) {
a[i] = a[i - n];
}
for(int i = 1 ; i <= 2 * n ; i++) {
sum[i] = sum[i - 1] + a[i];
}
for(int l = 1 ; l < n ; l++) {
for(int i = 1 ; i <= 2 * n && i + l <= 2 * n ; i++) {
int j = l + i;
for(int k = p[i][j - 1] ; k <= p[i + 1][j] ; k++) {
if(dp[i][j] > dp[i][k] + dp[k + 1][j] + sum[j] - sum[i - 1]) {
dp[i][j] = dp[i][k] + dp[k + 1][j] + sum[j] - sum[i - 1];
p[i][j] = k;
}
}
}
}
long long MIN = dp[1][n];
for(int i = 2 ; i <= n ; i++) {
MIN = min(MIN , dp[i][i + n - 1]);
}
printf("%lld\n" , MIN);
return 0;
}
////////////////
#include <iostream>
#include <cstring>
using namespace std;
#define LL long long
const int MAXN = 50005;
int n, num;
LL ans;
int dp[MAXN];
void combine(int now) {
int j;
int temp = dp[now - 1] + dp[now];
ans += (LL)temp;
for(int i = now; i < num - 1; i++) dp[i] = dp[i + 1];
num--;
for(j = now - 1; j > 0 && dp[j - 1] < temp; j--) dp[j] = dp[j - 1];
dp[j] = temp;
while(j >= 2 && dp[j - 2] <= dp[j]) {
int d = num - j;
combine(j - 1);
j = num - d;
}
}
int main()
{
scanf("%d", &n);
for(int i = 0; i < n; i++) scanf("%d", &dp[i]);
num = 1, ans = 0;
for(int i = 1; i < n; i++)
{
dp[num++] = dp[i];
while(num>=3 && dp[num-3]<=dp[num-1]) combine(num - 2);
}
while(num > 1) combine(num - 1);
printf("%lld\n", ans);
return 0;
}
51 nod 石子归并 + v2 + v3(区间dp,区间dp+平行四边形优化,GarsiaWachs算法)的更多相关文章
- 51nod 1022 石子归并 V2 —— DP四边形不等式优化
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 1022 石子归并 V2 基准时间限制:1 秒 空间限 ...
- [51nod 1022] 石子归并v2 [dp+四边形不等式优化]
题面: 传送门 思路: 加强版的石子归并,现在朴素的区间dp无法解决问题了 首先我们破环成链,复制一条一样的链并粘贴到原来的链后面,变成一个2n长度的序列,在它上面dp,效率O(8n^3) 显然是过不 ...
- 51nod1022 石子归并 V2
证明w满足四边形不等式,这里w是m的附属量,形如m[i,j]=opt{m[i,k]+m[k,j]+w[i,j]},此时大多要先证明w满足条件才能进一步证明m满足条件证明m满足四边形不等式证明s[i,j ...
- 石子合并(直线版+环形版)&(朴素写法+四边形优化+GarsiaWachs算法)
石子合并-直线版 (点击此处查看题目) 朴素写法 最简单常见的写法就是通过枚举分割点,求出每个区间合并的最小花费,从而得到整个区间的最小花费,时间复杂度为O(n^3),核心代码如下: ; i < ...
- 51Nod 1022 石子归并 V2(区间DP+四边形优化)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 题目大意: N堆石子摆成一个环.现要将石子有次序地合并成 ...
- 51 Nod 1068 Bash游戏v3
1068 Bash游戏 V3 题目来源: Ural 1180 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 有一堆石子共有N个.A B两个人轮流 ...
- 51 Nod Bash 游戏v2
1067 Bash游戏 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 收藏 取消关注 有一堆石子共有N个.A B两个人轮流拿,A先拿.每次只能拿1,3 ...
- 51 Nod 1500 苹果曼和树(树形dp)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1500 思路: 树形dp. 我们考虑当前结点 i ,对于结点 i ,它可以 ...
- 51 Nod 1006 最长公共子序列(LCS & DP)
原题链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1006 题目分析: 首先先知道LCS问题,这有两种: Long ...
随机推荐
- 8天入门docker系列 —— 第八天 让程序跑在swarm集群上
真正的落地部署都是希望程序跑在集群下,而不是单机版下测测玩玩,所以这篇就来聊一下怎么使用docker swarm进行部署,因为是swarm是docker自带的, 所以部署起来还是非常简单的. 一:前置 ...
- codeforces 576 div2 A-D题解
A题 Description 题目链接: https://codeforces.com/contest/1199/problem/A 题意: 给定长度为n(1≤n≤100000)的一个序列a,以及两个 ...
- Apache ActiveMQ任意文件写入漏洞(CVE-2016-3088)复现
Apache ActiveMQ任意文件写入漏洞(CVE-2016-3088)复现 一.漏洞描述 该漏洞出现在fileserver应用中,漏洞原理:ActiveMQ中的fileserver服务允许用户通 ...
- JS 中构造函数和普通函数的区别
原来只是随意的了解了下 , 但是最近有点忘了 于是详细了解下 加深下印象. 1.构造函数也是一个普通函数,创建方式和普通函数一样,但构造函数习惯上首字母大写 2.构造函数和普通函数的区别在于:调用方式 ...
- [Spring cloud 一步步实现广告系统] 14. 全量索引代码实现
上一节我们实现了索引基本操作的类以及索引缓存工具类,本小节我们开始实现加载全量索引数据,在加载全量索引数据之前,我们需要先将数据库中的表数据导出到一份文件中.Let's code. 1.首先定义一个常 ...
- SDS模块
早上花了一点时间读了下sds的相关源码,其实sds就是构造了两个字段用来记录len和free的状态,然后还有一个char[]用来记录字符串的值. 然后sds模块的函数都是在模拟str的操作. 比较,追 ...
- javaweb基础整理随笔------jstl与el表达式
虽然jsp中可以写java代码,但是现在不推荐这么做. jsp虽然本质是servlet,但是主要作用只是视图,视图的任务就是显示响应,而不是在JSP中做任何关于程序控制和业务逻辑的事情.所以在JSP页 ...
- jq css3实现跑马灯+大转盘
前端效果, <!DOCTYPE HTML><html><head> <meta http-equiv="Content-Type" con ...
- pycharm的安装配置及思维导图
1.1 计算机基础知识 主板:人的骨架,用于扩展设备的 cpu:人的大脑,用于计算和逻辑处理的 硬盘:存储数据(永久存储) 电源:人的心脏 内存:存储数据(临时存储) 断电即消失 操作系统 xp wi ...
- 100天搞定机器学习|Day19-20 加州理工学院公开课:机器学习与数据挖掘
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...