前两篇介绍了Spark的yarn client和yarn cluster模式,本篇继续介绍Spark的STANDALONE模式和Local模式。

下面具体还是用计算PI的程序来说明,examples中该程序有三个版本,分别采用Scala、Python和Java语言编写。本次用Java程序JavaSparkPi做说明。

 package org.apache.spark.examples;

 import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.SparkSession; import java.util.ArrayList;
import java.util.List; /**
* Computes an approximation to pi
* Usage: JavaSparkPi [partitions]
*/
public final class JavaSparkPi { public static void main(String[] args) throws Exception {
SparkSession spark = SparkSession
.builder()
.appName("JavaSparkPi")
.getOrCreate(); JavaSparkContext jsc = new JavaSparkContext(spark.sparkContext()); int slices = (args.length == 1) ? Integer.parseInt(args[0]) : 2;
int n = 100000 * slices;
List<Integer> l = new ArrayList<>(n);
for (int i = 0; i < n; i++) {
l.add(i);
} JavaRDD<Integer> dataSet = jsc.parallelize(l, slices); int count = dataSet.map(integer -> {
double x = Math.random() * 2 - 1;
double y = Math.random() * 2 - 1;
return (x * x + y * y <= 1) ? 1 : 0;
}).reduce((integer, integer2) -> integer + integer2); System.out.println("Pi is roughly " + 4.0 * count / n); spark.stop();
}
}

程序逻辑与之前的Scala和Python程序一样,就不再多做说明了。对比Scala、Python和Java程序,同样计算PI的逻辑,程序分别是26行、30行和43行,可以看出编写Spark程序,使用Scala或者Python比Java来得更加简洁,因此推荐使用Scala或者Python编写Spark程序。

下面来以STANDALONE方式来执行这个程序,执行前需要启动Spark自带的集群服务(在master上执行$SPARK_HOME/sbin/start-all.sh),最好同时启动spark的history server,这样即使在程序运行完以后也可以从Web UI中查看到程序运行情况。启动Spark的集群服务后,会在master主机和slave主机上分别出现Master守护进程和Worker守护进程。而在Yarn模式下,就不需要启动Spark的集群服务,只需要在客户端部署Spark即可,而STANDALONE模式需要在集群每台机器都部署Spark。

输入以下命令:

[root@BruceCentOS4 jars]# $SPARK_HOME/bin/spark-submit --class org.apache.spark.examples.JavaSparkPi --master spark://BruceCentOS.Hadoop:7077 $SPARK_HOME/examples/jars/spark-examples_2.11-2.3.0.jar

以下是程序运行输出信息部分截图,

开始部分:

中间部分:

结束部分:

从上面的程序输出信息科看出,Spark Driver是运行在客户端BruceCentOS4上的SparkSubmit进程当中的,集群是Spark自带的集群。

SparkUI上的Executor信息:

BruceCentOS4上的客户端进程(包含Spark Driver):

BruceCentOS3上的Executor进程:

BruceCentOS上的Executor进程:

BruceCentOS2上的Executor进程:

下面具体描述下Spark程序在standalone模式下运行的具体流程。

这里是一个流程图:

  1. SparkContext连接到Master,向Master注册并申请资源(CPU Core 和Memory)。
  2. Master根据SparkContext的资源申请要求和Worker心跳周期内报告的信息决定在哪个Worker上分配资源,然后在该Worker上获取资源,然后启动CoarseGrainedExecutorBackend。
  3. CoarseGrainedExecutorBackend向SparkContext注册。
  4. SparkContext将Applicaiton代码发送给CoarseGrainedExecutorBackend;并且SparkContext解析Applicaiton代码,构建DAG图,并提交给DAG Scheduler分解成Stage(当碰到Action操作时,就会催生Job;每个Job中含有1个或多个Stage,Stage一般在获取外部数据和shuffle之前产生),然后以Stage(或者称为TaskSet)提交给Task Scheduler,Task Scheduler负责将Task分配到相应的Worker,最后提交给CoarseGrainedExecutorBackend执行。
  5. CoarseGrainedExecutorBackend会建立Executor线程池,开始执行Task,并向SparkContext报告,直至Task完成。
  6. 所有Task完成后,SparkContext向Master注销,释放资源。

最后来看Local运行模式,该模式就是在单机本地环境执行,主要用于程序测试。程序的所有部分,包括Client、Driver和Executor全部运行在客户端的SparkSubmit进程当中。Local模式有三种启动方式。

#启动1个Executor运行任务(1个线程)

[root@BruceCentOS4 ~]#$SPARK_HOME/bin/spark-submit --class org.apache.spark.examples.JavaSparkPi --master local $SPARK_HOME/examples/jars/spark-examples_2.11-2.3.0.jar

#启动N个Executor运行任务(N个线程),这里N=2

[root@BruceCentOS4 ~]#$SPARK_HOME/bin/spark-submit --class org.apache.spark.examples.JavaSparkPi --master local[2] $SPARK_HOME/examples/jars/spark-examples_2.11-2.3.0.jar

#启动*个Executor运行任务(*个线程),这里*指代本地机器上的CPU核的个数。

[root@BruceCentOS4 ~]#$SPARK_HOME/bin/spark-submit --class org.apache.spark.examples.JavaSparkPi --master local[*] $SPARK_HOME/examples/jars/spark-examples_2.11-2.3.0.jar

以上就是个人对Spark运行模式(STANDALONE和Local)的一点理解,其中参考了“求知若渴 虚心若愚”博主的“Spark(一): 基本架构及原理”的部分内容(其中基于Spark2.3.0对某些细节进行了修正),在此表示感谢。

理解Spark运行模式(三)(STANDALONE和Local)的更多相关文章

  1. Spark运行模式与Standalone模式部署

    上节中简单的介绍了Spark的一些概念还有Spark生态圈的一些情况,这里主要是介绍Spark运行模式与Spark Standalone模式的部署: Spark运行模式 在Spark中存在着多种运行模 ...

  2. 理解Spark运行模式(二)(Yarn Cluster)

    上一篇说到Spark的yarn client运行模式,它与yarn cluster模式的主要区别就是前者Driver是运行在客户端,后者Driver是运行在yarn集群中.yarn client模式一 ...

  3. 理解Spark运行模式(一)(Yarn Client)

    Spark运行模式有Local,STANDALONE,YARN,MESOS,KUBERNETES这5种,其中最为常见的是YARN运行模式,它又可分为Client模式和Cluster模式.这里以Spar ...

  4. spark运行模式之二:Spark的Standalone模式安装部署

    Spark运行模式 Spark 有很多种模式,最简单就是单机本地模式,还有单机伪分布式模式,复杂的则运行在集群中,目前能很好的运行在 Yarn和 Mesos 中,当然 Spark 还有自带的 Stan ...

  5. spark运行模式之一:Spark的local模式安装部署

    Spark运行模式 Spark 有很多种模式,最简单就是单机本地模式,还有单机伪分布式模式,复杂的则运行在集群中,目前能很好的运行在 Yarn和 Mesos 中,当然 Spark 还有自带的 Stan ...

  6. spark运行模式

    一.Spark运行模式 Spark有以下四种运行模式: local:本地单进程模式,用于本地开发测试Spark代码; standalone:分布式集群模式,Master-Worker架构,Master ...

  7. Scala进阶之路-Spark独立模式(Standalone)集群部署

    Scala进阶之路-Spark独立模式(Standalone)集群部署 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 我们知道Hadoop解决了大数据的存储和计算,存储使用HDFS ...

  8. Spark运行模式概述

    Spark编程模型的回顾 spark编程模型几大要素 RDD的五大特征 Application program的组成 运行流程概述 具体流程(以standalone模式为例) 任务调度 DAGSche ...

  9. Vsftpd运行的两种模式-xinetd运行模式和 standalone模式

    vsftpd运行的两种模式-xinetd运行模式和 standalone模式 vsftpd提供了standalone和inetd(inetd或xinetd)两种运行模式. standalone一次性启 ...

随机推荐

  1. CTFd平台部署

    学校要办ctf了,自己一个人给学校搭建踩了好多坑啊..这里记录一下吧 心累心累 这里只记录尝试成功的过程 有些尝试失败的就没贴上来 为各位搭建的时候节省一部分时间吧. ubuntu18搭建 0x01 ...

  2. Linux系统取证实践

    目录 0x00 本课概述 0x01 用到命令   0x00 本课概述 本课时学习Linux系统下取证分析命令. 0x01 用到命令 1.top命令 2.ps命令 3.kill命令 4.linux系统日 ...

  3. [BZOJ1202] [NZOI2005]狡猾的商人

    Description 刁姹接到一个任务,为税务部门调查一位商人的账本,看看账本是不是伪造的.账本上记录了n个月以来的收入情况,其中第i 个月的收入额为Ai(i=1,2,3...n-1,n), .当 ...

  4. 4.Linux文件管理相关命令(上)

    1.复制命令cp cp - copy files and directories 拷贝 文件 和 目录 -r 递归复制,通常用来复制目录 -p 保持复制源文件的属性 -v 显示复制的过程 1. 将当前 ...

  5. 3. SOFAJRaft源码分析— 是如何进行选举的?

    开篇 在上一篇文章当中,我们讲解了NodeImpl在init方法里面会初始化话的动作,选举也是在这个方法里面进行的,这篇文章来从这个方法里详细讲一下选举的过程. 由于我这里介绍的是如何实现的,所以请大 ...

  6. 数据类型(二)---day04

    目录 上节课回顾 五 变量 (一)什么是变量 (二)变量的组成 (三)变量名的命名规范 (四)常量 (五)python变量内存管理 (六)变量的三种打印方式 六 数据类型 (一)数字类型 (二)字符串 ...

  7. Shiro框架 - 【shiro基础知识】

     转载:https://segmentfault.com/a/1190000013875092#articleHeader27  读完需要 63 分钟   前言 本文主要讲解的知识点有以下: 权限管理 ...

  8. 作为一名程序员,你真正了解CDN技术吗?

    本文导读: 物流仓库配送如何加速 静态资源文件部署方式 静态资源加速之CDN技术 解析过程中的名词解释 最后的总结 1.物流仓库配送如何加速 我们还是从生活中购物的例子来展开. 将时光倒回到几年前,在 ...

  9. QHDYZ模拟赛20191012

    今天信息处老师(并不是教练,基本等于机房看门大爷) (好吧老师其实很犇,软件什么的厉害的一批,只是不能带oi--) 跟我说:"xxj,过两天月考完了,可以在初赛前再整一次模拟赛,一天,三道题 ...

  10. Linux基于webRTC的二次开发(一)

    最近在做Linux平台下webRTC的二次开发,一路摸索,中间踩了不少坑,这一篇博客先来简单介绍下Linux上如何使用GCC编译webRTC. 为什么使用GCC编译? 这其实是无奈之举,Linux下w ...