最近遇见一个 MySQL 的慢查问题,于是排查了下,这里把相关的过程做个总结。

定位原因

我首先查看了 MySQL 的慢查询日志,发现有这样一条 query 耗时非常长(大概在 1 秒多),而且扫描的行数很大(10 多万条数据,差不多是全表了):

SELECT * FROM tgdemand_demand t1
WHERE
(
t1.id IN
(
SELECT t2.demand_id
FROM tgdemand_job t2
WHERE (t2.state = 'working' AND t2.wangwang = 'abc')
)
AND
NOT (t1.state = 'needConfirm')
)
ORDER BY t1.create_date DESC

这个查询不是很复杂,首先执行一个子查询,取到任务的状态(state)是 ‘working’ 并且任务的关联人 (wangwang)是’abc’的所有需求 id(这个设计师进行中的任务对应的需求 id),然后再到主表 tgdemand_demand中带入刚才的 id 集合,查询出需求状态(state)不是 ‘needConfirm’ 的所有需求,最后进行一个排序。

按道理子查询筛选出 id 后到主表过滤是直接使用到主键,应该是很快的啊。而且,我检查了子查询的 tgdemand_job 表的索引,where 中用到的查询条件都已经增加了索引。怎么会这样呢?

于是,我对这个 query 执行了一个 explain(输出 sql 语句的执行计划),看看 MySQL 的执行计划是怎样的。输出如下:

我们看到,第一行是 t1 表,type 是 ALL(全表扫描),rows(影响行数)是157089,没有用到任何索引;第二行是 t2 表,用到了索引。和我之前理解的执行顺序完全不一样!

为什么 MySQL 不是先执行子查询,而是对 t1 表进行了全表扫描呢?我们仔细看第二行的 select_type,发现它的值是 DEPENDENT_SUBQUERY,意思是这个子查询的查询方式依赖外层的查询。这是什么意思?

实际上,MySQL 对于这种子查询会进行改写,上面的 SQL 会被改写成下面的形式:

SELECT * FROM tgdemand_demand t1 WHERE EXISTS (
SELECT * FROM tgdemand_job t2 WHERE t1.id = t2.demand_id AND (t2.state = 'working' AND t2.wangwang = 'abc')
) AND NOT (t1.state = 'needConfirm')
ORDER BY t1.create_date DESC;

这表示,SQL 会去扫描 tgdemand_demand 表的所有数据,每条数据再传入到子查询中与表 tgdemand_job 进行关联,执行子查询,子查询根本不会先执行,而且子查询会执行 157089 次(外层表的记录数量)。还好我们的子查询加了必要的索引,不然结果会更加惨不忍睹。

这个结果真是太坑爹,而且十分违反直觉。对于慢查询,千万不要想当然,还是多多 explain,看看数据库实际上是怎么去执行的。

问题修复

既然子查询会被改写,那最简单的解决方案就是不用子查询,将内层获取需求 id 的 SQL 单独拿出来执行,取到结果后再执行一条 SQL 去获取实际的数据。大概像这样(下面的语句是不合法的,只是示意):

ids = SELECT t2.demand_id
FROM tgdemand_job t2
WHERE (t2.state = 'working' AND t2.wangwang = 'abc'); SELECT * FROM tgdemand_demand t1
WHERE
(
t1.id IN ids
AND
NOT (t1.state = 'needConfirm')
)
ORDER BY t1.create_date DESC;

说干咱就干,我找到了下面的代码(是 python 语言写的):

demand_ids = Job.objects.filter(wangwang=user['wangwang'], state='working').values_list("demand_id", flat=True)

demands = Demand.objects.filter(id__in=demand_ids).exclude(state__in=['needConfirm']).order_by('-create_date')

咦!这不是和我想得是一样的嘛?先查出需求 id(代码第一行),然后用 id 集合再去执行实际的查询(代码第二行)。为什么经过 ORM 框架的处理后产出的 SQL 就不一样了呢?

带着这个问题我搜索了一番。原来 Django 自带的 ORM 框架生成的 QuerySet 是懒执行的(lazy evaluated),我们可以将这种 QuerySet 到处传,直到需要时才会实际的执行 SQL。

比如,我们代码里面的 Job.objects.filter(wangwang=user['wangwang'], state='working').values_list("demand_id", flat=True)这个 QuerySet 实际上并没有执行,就被作为参数传递给了id__in,当Demand.objects.filter(id__in=demand_ids).exclude(state__in=['needConfirm']).order_by('-create_date')这个 QuerySet 执行时,刚才未执行的 QuerySet 才开始作为 SQL 执行,于是生成了最开始的 SQL 语句。

既然如此,我们的目的要让 QuerySet 提前执行,获得结果集。根据文档,对 QuerySet 进行循环、slice、取 len、list 转换的时候被执行。于是我将代码更改为了下面的样子:

demand_ids = list(Job.objects.filter(wangwang=user['wangwang'], state='working').values_list("demand_id", flat=True))

demands = Demand.objects.filter(id__in=demand_ids).exclude(state__in=['needConfirm']).order_by('-create_date')

终于,页面打开速度恢复正常了。

实际上,我们也可以对 SQL 进行改写来解决问题:

select * from tgdemand_demand t1, (select t.demand_id from tgdemand_job t where t.state = 'working' and t.wangwang = 'abc') t2
where t1.id=t2.demand_id and not (t1.state = 'needConfirm')
order by t1.create_date DESC

思路是去掉子查询,换用 2 个表进行 join 的方式来取得数据。这里就不展开了。

感想

框架可以提高生产率的前提是对背后的原理足够了解,不然应用很可能就会在某个时间暴露出一些隐蔽的要命问题(这些问题在小规模阶段可能根本都发现不了……)。保证应用的健壮真是个大学问,还有很多东西值得我们去探索。

性能分析 | MySQL 的慢查分析实例的更多相关文章

  1. MySQL 的性能(上篇)—— SQL 执行时间分析

    简介 文中内容均为阅读前辈的文章所整理而来,参考文章已在最后全指明 本文分为上下两篇: 上篇:MySQL 的 SQL 执行时间分析 下篇:MySQL 性能优化 后端开发必然会接触到数据库,数据层的优劣 ...

  2. MySQL 的性能(上篇)—— SQL 执行分析

    简介 文中内容均为阅读前辈的文章所整理而来,参考文章已在最后全指明 本文分为上下两篇: 上篇:MySQL 的 SQL 执行分析 下篇:MySQL 性能优化 后端开发必然会接触到数据库,数据层的优劣会影 ...

  3. 【mysql】MySQL知识整理-死锁分析-性能优化等

    [[TOC]] 常用操作指令 show databases:显示所有的数据库: use dbName: 使用指定数据库 show tables: 显示所有的数据表: desc tableName: 查 ...

  4. mysql show profiles使用分析sql性能

    mysql show profiles使用分析sql性能 Show profiles是5.0.37之后添加的,要想使用此功能,要确保版本在5.0.37之后. 查看一下我的数据库版本 mysql> ...

  5. MySQL性能分析, mysql explain执行计划详解

    MySQL性能分析 MySQL性能分析及explain用法的知识是本文我们主要要介绍的内容,接下来就让我们通过一些实际的例子来介绍这一过程,希望能够对您有所帮助. 1.使用explain语句去查看分析 ...

  6. [转载]mysql慢日志文件分析处理

    原文地址:mysql慢日志文件分析处理作者:maxyicha mysql有一个功能就是可以log下来运行的比较慢的sql语句,默认是没有这个log的,为了开启这个功能,要修改my.cnf或者在mysq ...

  7. 从运维角度来分析mysql数据库优化的一些关键点【转】

    概述 一个成熟的数据库架构并不是一开始设计就具备高可用.高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善. 1.数据库表设计 项目立项后,开发部根据产品部需求开发项目,开发工程师工作其中一部分 ...

  8. 分析MySQL中哪些情况下数据库索引会失效

    要想分析MySQL查询语句中的相关信息,如是全表查询还是部分查询,就要用到explain. 一.explain 用法:explain +查询语句. id:查询语句的序列号,上面图片中只有一个selec ...

  9. 重新学习MySQL数据库5:根据MySQL索引原理进行分析与优化

    重新学习MySQL数据库5:根据MySQL索引原理进行分析与优化 一:Mysql原理与慢查询 MySQL凭借着出色的性能.低廉的成本.丰富的资源,已经成为绝大多数互联网公司的首选关系型数据库.虽然性能 ...

随机推荐

  1. PLSQL导入导出数据库

    使用sql脚本和plsql完成数据库的导入导出 1. 准备数据库创建脚本 [SQL] 创建数据库表空间: 格式:create tablespace 表空间名 datafile ‘数据文件位置及名称’ ...

  2. 如何成为优秀的技术Leader

    技术主管,又叫技术经理,英文一般是 Tech Leader ,简称 TL.随着工作经验的不断积累,能力的不断提升,每个人都有机会成为 Team Leader. 然而在机会到来前,我们必须提前做好准备, ...

  3. 利用FastReport直接生成条码

    procedure TForm1.Button1Click(Sender: TObject); var x:TfrxbarCodeView; begin x:=TfrxbarCodeView.Crea ...

  4. OverflowError:django signed integer is greater than maximum 数据库日期字段相关错

    使用django中的默认数据库sqlite3, 在pycharm中录入日期字段相关信息结果出现问题 在保存的时候如图 直接在界面选择的日期变成了时间戳, 并且在获取数据的时候报错 经过查询之后(舔大佬 ...

  5. input子系统驱动

    input子系统驱动 框架分析 核心层 文件为:/drivers/input/input.c: 首先找到入口函数为**static int __init input_init(void)**,在该函数 ...

  6. 洛谷 P2756 飞行员配对方案问题 (二分图/网络流,最佳匹配方案)

    P2756 飞行员配对方案问题 题目背景 第二次世界大战时期.. 题目描述 英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2 名飞行员,其 ...

  7. sklearn & ml tutorial

    第一章 引言 pd.scatter_matrix(pd.DataFrame(X_train),c=y_train_name,figsize=(15,15),marker='o',hist_kwds={ ...

  8. 【Java 基础实例—Bank 项目1】

    (上图Wie任务要求的UML结构) Account.java 文件: package Banking_1; public class Account { private double balance; ...

  9. golang docker kubernetes

    不断共建Golang生态.其中比较有代表性的Golang编写软件作品是Docker和Kubernetes.从目前Golang的发展时间和社区活跃度来看,Golang无疑是一门成功的编程语言.

  10. golang restful api

    https://medium.com/@petrousov/how-to-build-a-restful-api-in-go-for-phonebook-app-d55f7234a10 ------- ...