题目传送门:https://atcoder.jp/contests/abc136/tasks/abc136_f

  题目大意:在平面上有$n$个点我们,定义一个点集的权值为平面上包含这个点集的最小矩形所包含的点个数(矩形的边与坐标轴平行),求所有非空点集的权值和,保证每个点的横纵坐标互不相同。

  先考虑转化一下,求每个点被多少个点集$S$的矩形包含,假设我们当前考虑的是点$i$,那么可以分成两种情况:$i \in S$或$i \notin S$。

    1. 对于$i \in S$的情况,容易发现点$i$对所有包含$i$的点集有贡献,这里的贡献为$2^(n-1)$。

    2. 对于$i \notin S$的情况,因为每个点的横纵坐标互不相同,所以点$i$把整个坐标系划分成了4个区域

    那么若点集$S$的矩形包含点$i$,那么必存在$p,q \in S,p \in A,q \in D$或$p \in B,q \in D$。

    设$A$区域中的点数量为$a$,$B$区域中的点数量为$b$,$C$区域中的点数量为$c$,$D$区域中的点数量为$d$,容斥可知这里的贡献为$(2^a-1)2^b2^c(2^d-1)+2^a(2^b-1)(2^c-1)2^d-(2^a-1)(2^b-1)(2^c-1)(2^d-1)$。

  计算每个区域的点数可以将点排序离散化后用树状数组维护,于是就可以在$O(n \log n)$的时间复杂度下解决问题。

  代码:

#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#define ll long long
#define mod 998244353
#define maxn 200010
inline ll read()
{
ll x=; char c=getchar(),f=;
for(;c<''||''<c;c=getchar())if(c=='-')f=-;
for(;''<=c&&c<='';c=getchar())x=x*+c-'';
return x*f;
}
inline void write(ll x)
{
static char buf[],len; len=;
if(x<)x=-x,putchar('-');
for(;x;x/=)buf[len++]=x%+'';
if(!len)putchar('');
else while(len)putchar(buf[--len]);
}
inline void writesp(ll x){write(x); putchar(' ');}
inline void writeln(ll x){write(x); putchar('\n');}
struct Data{
int x,id;
}num[maxn];
struct point{
int x,y,rk;
}a[maxn];
int n;
bool cmp1(Data a,Data b){return a.x<b.x;}
bool cmp2(point a,point b){return a.x<b.x;}
inline ll power(ll a,ll b)
{
ll ans=;
for(;b;b>>=,a=a*a%mod)
if(b&)ans=ans*a%mod;
return ans;
}
int bit1[maxn],bit2[maxn];
void add1(int x,int k){for(;x<=n;x+=x&(-x))bit1[x]+=k;}
int getsum1(int x){int sum=; for(;x;x-=x&(-x))sum+=bit1[x]; return sum;}
void add2(int x,int k){for(;x<=n;x+=x&(-x))bit2[x]+=k;}
int getsum2(int x){int sum=; for(;x;x-=x&(-x))sum+=bit2[x]; return sum;}
int main()
{
n=read();
for(int i=;i<=n;i++){
a[i].x=read(); a[i].y=read();
num[i].x=a[i].y; num[i].id=i;
}
std::sort(num+,num+n+,cmp1);
for(int i=;i<=n;i++)
a[num[i].id].rk=i;
std::sort(a+,a+n+,cmp2);
for(int i=;i<=n;i++)
bit1[i]=,bit2[i]=i&(-i);
ll ans=;
for(int i=;i<=n;i++){
add2(a[i].rk,-);
int A=getsum1(a[i].rk),B=getsum1(n)-getsum1(a[i].rk),C=getsum2(a[i].rk),D=getsum2(n)-getsum2(a[i].rk);
ll totA=power(,A),totB=power(,B),totC=power(,C),totD=power(,D);
ans=(ans+(totA-)*totB%mod*totC%mod*(totD-))%mod;
ans=(ans+totA*(totB-)%mod*(totC-)%mod*totD)%mod;
ans=(ans-(totA-)*(totB-)%mod*(totC-)%mod*(totD-)%mod+mod)%mod;
ans=(ans+power(,n-))%mod;
add1(a[i].rk,);
}
writeln(ans);
return ;
}

abc136F

【atcoder】Enclosed Points [abc136F]的更多相关文章

  1. 【AtCoder】ARC092 D - Two Sequences

    [题目]AtCoder Regular Contest 092 D - Two Sequences [题意]给定n个数的数组A和数组B,求所有A[i]+B[j]的异或和(1<=i,j<=n ...

  2. 【Atcoder】CODE FESTIVAL 2017 qual A D - Four Coloring

    [题意]给定h,w,d,要求构造矩阵h*w满足任意两个曼哈顿距离为d的点都不同色,染四色. [算法]结论+矩阵变换 [题解] 曼哈顿距离是一个立着的正方形,不方便处理.d=|xi-xj|+|yi-yj ...

  3. 【AtCoder】ARC 081 E - Don't Be a Subsequence

    [题意]给定长度为n(<=2*10^5)的字符串,求最短的字典序最小的非子序列字符串. http://arc081.contest.atcoder.jp/tasks/arc081_c [算法]字 ...

  4. 【AtCoder】AGC022 F - Leftmost Ball 计数DP

    [题目]F - Leftmost Ball [题意]给定n种颜色的球各k个,每次以任意顺序排列所有球并将每种颜色最左端的球染成颜色0,求有多少种不同的颜色排列.n,k<=2000. [算法]计数 ...

  5. 【AtCoder】AGC005 F - Many Easy Problems 排列组合+NTT

    [题目]F - Many Easy Problems [题意]给定n个点的树,定义S为大小为k的点集,则f(S)为最小的包含点集S的连通块大小,求k=1~n时的所有点集f(S)的和取模92484403 ...

  6. 【AtCoder】ARC067 F - Yakiniku Restaurants 单调栈+矩阵差分

    [题目]F - Yakiniku Restaurants [题意]给定n和m,有n个饭店和m张票,给出Ai表示从饭店i到i+1的距离,给出矩阵B(i,j)表示在第i家饭店使用票j的收益,求任选起点和终 ...

  7. 【AtCoder】ARC095 E - Symmetric Grid 模拟

    [题目]E - Symmetric Grid [题意]给定n*m的小写字母矩阵,求是否能通过若干行互换和列互换使得矩阵中心对称.n,m<=12. [算法]模拟 [题解]首先行列操作独立,如果已确 ...

  8. 【Atcoder】AGC022 C - Remainder Game 搜索

    [题目]C - Remainder Game [题意]给定n个数字的序列A,每次可以选择一个数字k并选择一些数字对k取模,花费2^k的代价.要求最终变成序列B,求最小代价或无解.n<=50,0& ...

  9. 【Atcoder】AGC 020 B - Ice Rink Game 递推

    [题意]n个人进行游戏,每轮只保留最大的a[i]倍数的人,最后一轮过后剩余2人,求最小和最大的n,或-1.n<=10^5. [算法]递推||二分 [题解]令L(i),R(i)表示第i轮过后的最小 ...

随机推荐

  1. es6 是否包含字符串判断

    字符串查找类 接下来介绍一些可以通过 ES5 PolyFill的方法,但是现在 ES6 原生实现了 Method Param Return Description includes() 需要验证是否被 ...

  2. Elasticsearch删除数据操作,你必须知道的一些坑

    前两天有同事打电话问我,说ES删除数据有没有什么坑? 我当时就问,是删索引还是删索引里的数据?她回答说是删数据,我说查出这些数据直接删除就好了,没有什么坑... 后来想想,关于ES数据的删除,之前确实 ...

  3. iOS面试-关于性能优化

    目录 我要给出的建议将分为三个不同的等级: 入门级. 中级和进阶级: 入门级(这是些你一定会经常用在你app开发中的建议) 1. 用ARC管理内存2. 在正确的地方使用reuseIdentifier3 ...

  4. 15-1 shell脚本进阶

    shell脚本进阶 循环 循环执行 将某代码段重复运行多次 重复运行多少次 循环次数事先已知 循环次数事先未知 有进入条件和退出条件 for, while, until for循环 for VAR i ...

  5. Jmeter 逻辑控制器 之 Switch Controller

    一.认识 Switch Controller Switch Controller:开关控制器,通过其下样例顺序数值或名称 控制执行某一个样例  二.通过样例顺序数值控制执行样例  三.通过样例名称控制 ...

  6. 01.04 linux命令(2

    ======================Linux下的用户管理==============用户信息保存/etc/passwd ,一般用户都有读的权限真正的用户:修改密码,可以登录伪用户:应用程序在 ...

  7. 【转载】DOS系统的安装

    <电脑爱好者>报转载第一辑第一篇之DOS系统的安装 DOS系统的安装 一.DOS的历史 DOS是Diskette Operating System的缩写,意思是磁盘操作系统,主要有MS-D ...

  8. vscode Settings Sync 插件的详细介绍

    参考链接:https://www.jianshu.com/p/dbbdc635f8e1

  9. Navicate 许可证

    参考: https://blog.csdn.net/weixin_42129270/article/details/81182261

  10. HDU-6170 Two strings

    http://acm.hdu.edu.cn/showproblem.php?pid=6170 . 匹配任意字符,x* 匹配任意长度的 x (x 为任意字符,长度可以为 0 ) 正则表达式 #inclu ...