CodeForces 839D - Winter is here | Codeforces Round #428 (Div. 2)
赛后听 Forever97 讲的思路,强的一匹- -
/*
CodeForces 839D - Winter is here [ 数论,容斥 ] | Codeforces Round #428 (Div. 2)
题意:
给出数列a[N]
对每个子集,若 gcd(a[I1], a[I2], a[I3] ..., a[In]) > 1,则贡献为 n*gcd
求总贡献和
限制: N <= 2e5,a[i] <= 1e6
分析:
记录 num[i]数组为 i 的倍数的个数
则 gcd >= i 能组成的所有方案的总人数 f(i) = 2^(num[i]-1)*num[i]
设 g(i) 为 gcd == i 能组成的所有方案的总人数
可得 f(x) = ∑ [x|y] g(y)
反演或者容斥即可
*/
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int N = 1e6+5;
const LL MOD = 1e9+7;
int n, a[N], num[N], Max;
LL two[N], sum[N];
int main()
{
two[0] = 1;
for (int i = 1; i < N; i++) two[i] = two[i-1] * 2 % MOD;
scanf("%d", &n);
Max = 0;
for (int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
Max = max(a[i], Max);
num[a[i]]++;
}
for (int i = 1; i <= Max; i++)
for (int j = i+i; j <= Max; j += i)
num[i] += num[j];
LL ans = 0;
for (int i = Max; i >= 2; i--)
{
sum[i] = two[num[i]-1]*num[i] % MOD;
for (int j = i+i; j <= Max; j += i)
{
sum[i] = (sum[i] - sum[j] + MOD) % MOD;
}
ans = (ans + sum[i] * i % MOD) % MOD;
}
printf("%lld\n", ans);
}
比赛时候写的很随意- -,不过思路是一样的
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const LL MOD = 1e9+7;
const int N = 1000005;
bool notp[N];
int prime[N], pnum, mu[N];
void Mobius() {
memset(notp, 0, sizeof(notp));
mu[1] = 1;
for (int i = 2; i < N; i++) {
if (!notp[i]) prime[++pnum] = i, mu[i] = -1;
for (int j = 1; prime[j]*i < N; j++) {
notp[prime[j]*i] = 1;
if (i%prime[j] == 0) {
mu[prime[j]*i] = 0;
break;
}
mu[prime[j]*i] = -mu[i];
}
}
}
int n, a[N], Max;
int num[N];
LL two[N];
int main()
{
two[0] = 1;
for (int i = 1; i < N; i++) two[i] = two[i-1]*2 % MOD;
Mobius();
scanf("%d", &n);
Max = 0;
for (int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
Max = max(Max, a[i]);
for (LL j = 1; j*j <= a[i]; j++)
{
if (j*j == a[i]) num[j]++;
else if (a[i] % j == 0)
num[j]++, num[a[i]/j]++;
}
}
LL ans = 0;
for (int i = 2; i <= Max; i++)
{
LL sum = 0;
for (int j = i, k = 1; j <= Max; j += i, k++)
{
sum += (mu[k] * (two[num[j]-1]*num[j])%MOD + MOD) % MOD;
sum %= MOD;
}
ans = (ans + sum * i%MOD) % MOD;
}
printf("%lld\n", ans% MOD);
}
CodeForces 839D - Winter is here | Codeforces Round #428 (Div. 2)的更多相关文章
- CodeForces 839C - Journey | Codeforces Round #428 (Div. 2)
起初误以为到每个叶子的概率一样于是.... /* CodeForces 839C - Journey [ DFS,期望 ] | Codeforces Round #428 (Div. 2) */ #i ...
- CodeForces 839B - Game of the Rows | Codeforces Round #428 (Div. 2)
血崩- - /* CodeForces 839B - Game of the Rows [ 贪心,分类讨论] | Codeforces Round #428 (Div. 2) 注意 2 7 2 2 2 ...
- Codeforces Round #428 (Div. 2) D. Winter is here 容斥
D. Winter is here 题目连接: http://codeforces.com/contest/839/problem/D Description Winter is here at th ...
- 【容斥原理】Codeforces Round #428 (Div. 2) D. Winter is here
给你一个序列,让你对于所有gcd不为1的子序列,计算它们的gcd*其元素个数之和. 设sum(i)为i的倍数的数的个数,可以通过容斥算出来. 具体看这个吧:http://blog.csdn.net/j ...
- Codeforces 839D Winter is here - 暴力 - 容斥原理
Winter is here at the North and the White Walkers are close. John Snow has an army consisting of n s ...
- Codeforces Round #428 (Div. 2) 题解
题目链接:http://codeforces.com/contest/839 A. Arya and Bran 题意:每天给你一点糖果,如果大于8个,就只能给8个,剩下的可以存起来,小于8个就可以全部 ...
- Codeforces 839D Winter is here【数学:容斥原理】
D. Winter is here time limit per test:3 seconds memory limit per test:256 megabytes input:standard i ...
- Codeforces 839D Winter is here(容斥原理)
[题目链接] http://codeforces.com/contest/839/problem/D [题目大意] 给出一些数,求取出一些数,当他们的GCD大于0时,将数量乘GCD累加到答案上, 求累 ...
- Codeforces Round #428 (Div. 2)E. Mother of Dragons
http://codeforces.com/contest/839/problem/E 最大团裸题= =,用Bron–Kerbosch算法,复杂度大多博客上没有,维基上查了查大约是O(3n/3) 最大 ...
随机推荐
- rownum伪行号-排行榜-分页
rownum伪行号-排行榜-分页 1.rownum 是oracle数据库特有的一个特性,它针对每一个查询(包括子查询),都会生成一个rownum用于对该次查询进行编号 2.每个rownum只针对当前s ...
- mysql 字段定义不要用null的分析
一 NULL 为什么这么经常用 (1) java的null null是一个让人头疼的问题,比如java中的NullPointerException.为了避免猝不及防的空指针,需要小心翼翼地各种if判断 ...
- (八)动态 sql
目录 什么是动态 sql sql 片段 foreach 标签 什么是动态 sql 我们之前在映射文件中,配置 sql 的时候,其实都是静态的 : <!--复杂查询--> <selec ...
- POJ1631_高深DP
按照那个图形研究比较了一会, 居然发现是最长上升子序列问题, 这个是真的牛逼!! 只不过是题目没有说的那么直白!
- 题目12 打印1到最大的n位数
///////////////////////////////////////////////////////////////////////////////////// // 2.打印1到最大的n位 ...
- S02_CH06_XADC实验
S02_CH06_XADC实验 6.1实验概述 这次借助zynq的内嵌的XADC来采集zynq内部的一些参数: •VCCINT:内部PL核心电压 •VCCAUX:辅助PL电压 •VREFP:XADC正 ...
- 数据库分库分表策略之MS-SQL读写分离方案
MS-SQL读写分离将从以下知识点进行展开: 以下截图内容来自博主:https://www.cnblogs.com/echosong/p/3603270.html 1.本地发布(写库如:centerd ...
- 巧妙记忆 ++i 和 i++ 的区别
区别在于: i++先做别的事,再自己加1, ++i先自己加1,再做别的事情, 形象的理解,你可以把 ++i比作自私的人,首先考虑自己的事, i++是无私的,先为别人照想,这样方便记忆. 示例: a = ...
- js同步和异步
JavaScript语言的一大特点就是单线程,也就是说,同一个时间只能做一件事. JavaScript的单线程,与它的用途有关.作为浏览器脚本语言,JavaScript的主要用途是与用户互动,以及操作 ...
- sed原理及sed命令格式 ,缓存区,模式空间
4.1 Sed工作原理 sed是一个非交互式的流编辑器.所谓非交互式,是指使用sed只能在命令行下输入编辑命令来编辑文本,然后在屏幕上查看输出:而所谓流编辑器,是指sed每次只从 ...