luogu P3226 [HNOI2012]集合选数
因为限制关系只和2和3有关,如果把数中2的因子和3的因子都除掉,那剩下的数不同的数是不会相互影响,所以每次考虑剩下的数一样的一类数,答案为每类数答案的乘积
如果选了一个数,那么2的因子多1的和3的因子多1的数都不能选.假设这个数为\(2^a3^bc\),那就把这个数放在\(i\)行\(j\)列上,现在问题变成这一堆数有多少子集满足没有两个上下或左右相邻元素,那么状压一行的放数状态,一行一行扫过去dp即可
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double
using namespace std;
const int N=1e5+10,M=(1<<16)+10,mod=1e9+1;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
void ad(int &x,int y){x+=y,x-=x>=mod?mod:0;}
int n,f[2][M],nm[20],t,ans=1,s[M],ts;
vector<int> sq[N];
int main()
{
n=rd();
for(int i=1;i<=n;++i)
{
int x=i;
while(x%2==0) x/=2;
while(x%3==0) x/=3;
sq[x].push_back(i/x);
}
for(int i=0;i<1<<16;++i)
{
bool ok=1;
for(int j=0;ok&&j<15;++j) ok=!(i>>j&1)||!(i>>(j+1)&1);
if(ok) s[++ts]=i;
}
for(int i=1;i<=n;++i)
{
if(sq[i].empty()) continue;
vector<int>::iterator it;
memset(nm,0,sizeof(nm));
for(it=sq[i].begin();it!=sq[i].end();++it)
{
int x=*it,c2=1;
while(x%2==0) ++c2,x/=2;
++nm[c2];
}
t=0;
while(nm[t+1]) ++t;
int nw=1,la=0;
f[la][0]=1;
for(int j=1;j<=t;++j)
{
for(int k=1;s[k]<1<<nm[j-1];++k)
{
if(!f[la][s[k]]) continue;
for(int l=1;s[l]<1<<nm[j];++l)
if(!(s[k]&s[l])) ad(f[nw][s[l]],f[la][s[k]]);
f[la][s[k]]=0;
}
nw^=1,la^=1;
}
int sm=0;
for(int k=1;s[k]<1<<nm[t];++k)
ad(sm,f[la][s[k]]),f[la][s[k]]=0;
ans=1ll*ans*sm%mod;
}
printf("%d\n",ans);
return 0;
}
luogu P3226 [HNOI2012]集合选数的更多相关文章
- P3226 [HNOI2012]集合选数
考虑构造矩阵 1 3 9 27...... 2 6 18 54...... 4 12 36 108...... ...... 发现在这个矩阵上一个合法的集合是一个满足选择的数字不相邻的集合,由于行数列 ...
- 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$
正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- BZOJ_2734_[HNOI2012]集合选数_构造+状压DP
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...
- 2734: [HNOI2012]集合选数
2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...
- [HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...
- 2734: [HNOI2012]集合选数 - BZOJ
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- bzoj 2734: [HNOI2012]集合选数
题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜 ...
- 【刷题】BZOJ 2734 [HNOI2012]集合选数
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
随机推荐
- TCP被动打开 之 第三次握手-接收ACK
假定客户端主动打开,发送syn包到服务器,服务器创建连接请求控制块加入到队列,进入TCP_NEW_SYN_RECV 状态,发送syn+ack给客户端,并启动定时器,等待客户端回复最后一个握手ack: ...
- State Threads之co-routine的创建和stack的管理
1. 综述 协程库 State Threads Library 是一个基于 setjmp/longjmp 实现的 C 语言版用户线程库或协程库(user level thread). 基本协程例子: ...
- DL反向传播理解
作者:寒小阳 时间:2015年12月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50321873 声明:版权所有,转载请联系作者并注明 ...
- STL priority_queue
priority_queue 优先队列(Priority Queues):顾名思义,一个有着优先级的队列.它是一种ADT,和队列的思想差不多—— 排队,数据结构中的队列是不能插队的,不能颠倒排队的顺序 ...
- oracle设置默认值无效
一次做农行的项目,在向一个表插入数据时我们要求插入字符类型的操作日期和时间,我们这边当时采取的是给日期和时间字段设置默认值的方法:下面我简单还原一下当时的表结构 -- Create table cre ...
- gcc posix sjij for MSYS 9.2.1+
mingw gcc 32位 版本 9.2.1 以上的 以后都在 github 上发布 https://github.com/qq2225936589/gcc-i686-posix-sjlj-for-M ...
- C语言基础:内置函数的调用
#include<stdio.h>#include<math.h>#include<stdlib.h>#include<ctype.h>#include ...
- 在pythonanywhere.com免费网站建立虚拟机环境以及django网站
注册,添加App,选择python3.5,然后打开控制台 搭建python3.5虚拟环境 python --version virtualenv -p /usr/bin/python3.5 VENV ...
- vtk画折线,并且禁止鼠标交互
VTK画图,禁止鼠标拖动时滚动图形,鼠标滚轮滚动时放大/缩小图形的方法. renderLine.InteractiveOff(); 下面是VTK画折线的代码 // Create five points ...
- Vim常用操作集合
基本上 vi/vim 共分为三种模式,分别是一般命令模式(Command mode),编辑模式(Insert mode)和命令行模式(Last line mode). 命令模式: 用户刚刚启动 vi/ ...