A. 石子游戏

Alice和Bob在玩游戏,他们面前有n堆石子,对于这些石子他们可以轮流进行一些操作,不能进行下去的人则输掉这局游戏。
可以进行两种操作:
1. 把石子数为奇数的一堆石子分为两堆正整数个石子
2. 把两堆石子数为偶数的石子合并为一堆
两人都足够聪明,会按照最优策略操作。现在Alice想知道自己先手,谁能最后赢得比赛。

特判全1的状态, 忽略掉所有的1, 若奇数个数+总个数为偶数则先手必胜否则后手必胜.

因为每一步无论如何操作奇数个数+总个数的奇偶性一定改变.

B. 222333

小Y最近对质数产生了浓厚的兴趣,他认为2和3与其它所有质数具有不同寻常的关联,他正试图去寻找这些关系。可以知道,对于任意质数P>=5,都存在正整数m,n使得P|(2m)*(3n)-1,且m+n<=P。但小Y想知道对于一个质数P,满足上述条件的数对(m,n)中m+n最小的一个。

条件等价于$2^m3^n\equiv 1\space (mod\space P)$. 暴力枚举$m$, 查询逆元即可.

C. 失衡天平

终于Alice走出了大魔王的陷阱,可是现在傻傻的她忘了带武器了,这可如何是好???这个时候,一个神秘老人走到她面前答应无偿给她武器,但老人有个条件,需要将所选武器分别放在天平的两端,若天平平衡则可以将天平上的所有武器拿走,还好这个天平锈迹斑斑,只要两端重量相差小于等于m就会保持平衡,Alice傻傻的认为越重的武器越好,求Alice最多能拿走的武器总重量。(不限操作次数)

首先可以发现显然最优解可以将所有操作合并为1个操作, 然后设$dp[i][j]$为前$i$个数差为$j$时所取的最大值, 暴力O(n^3)DP即可.

Wannafly挑战赛24的更多相关文章

  1. Wannafly挑战赛24游记

    Wannafly挑战赛24游记 A - 石子游戏 题目大意: A和B两人玩游戏,总共有\(n(n\le10^4)\)堆石子,轮流进行一些操作,不能进行下去的人则输掉这局游戏.操作包含以下两种: 把石子 ...

  2. 【Wannafly挑战赛24】【C失衡天平】

    https://www.nowcoder.com/acm/contest/186/C 题意:有n个武器,每个武器都有一个重量 Wi,有一个天平,只要两端的重量差不大于m就能达到平衡,求在天平平衡的情况 ...

  3. Wannafly挑战赛24 B 222333

    小水题???但是时间限制异常鬼畜,跑了2min \(P | (2^m)*(3^n)-1\)的意思就是\(2^m 3^n = 1 (\text{mod }P)\) 设f[i]表示3^k=i的最小的k 然 ...

  4. Wannafly挑战赛25游记

    Wannafly挑战赛25游记 A - 因子 题目大意: 令\(x=n!(n\le10^{12})\),给定一大于\(1\)的正整数\(p(p\le10000)\)求一个\(k\)使得\(p^k|x\ ...

  5. Wannafly挑战赛27

    Wannafly挑战赛27 我打的第一场$Wannafly$是第25场,$T2$竟然出了一个几何题?而且还把我好不容易升上绿的$Rating$又降回了蓝名...之后再不敢打$Wannafly$了. 由 ...

  6. Wannafly 挑战赛 19 参考题解

    这一次的 Wannafly 挑战赛题目是我出的,除了第一题,剩余的题目好像对大部分算法竞赛者来说好像都不是特别友好,但是个人感觉题目质量还是过得去的,下面是题目链接以及题解. [题目链接] Wanna ...

  7. Wannafly挑战赛21A

    题目链接 Wannafly挑战赛21A 题解 代码 #include <cstdio> #include <cmath> #define MAX 1000005 #define ...

  8. Wannafly挑战赛25C 期望操作数

    Wannafly挑战赛25C 期望操作数 简单题啦 \(f[i]=\frac{\sum_{j<=i}f[j]}{i}+1\) \(f[i]=\frac{f[i]}{i}+\frac{\sum_{ ...

  9. Wannafly挑战赛18B 随机数

    Wannafly挑战赛18B 随机数 设\(f_i\)表示生成\(i\)个数有奇数个1的概率. 那么显而易见的递推式:\(f_i=p(1-f_{i-1})+(1-p)f_{i-1}=(1-2p)f_{ ...

随机推荐

  1. in和exists的区别

    表展示 首先,查询中涉及到的两个表,一个user和一个order表,具体表的内容如下: user表: order表: in 确定给定的值是否与子查询或列表中的值相匹配.in在查询的时候,首先查询子查询 ...

  2. MAC ADDRESS

    可以使用手机Wifi或蓝牙的MAC地址作为设备标识,但是并不推荐这么做,原因有以下两点:硬件限制:并不是所有的设备都有Wifi和蓝牙硬件,硬件不存在自然也就得不到这一信息.获取的限制:如果Wifi没有 ...

  3. Linux设备驱动程序 之 模块参数

    模块支持参数的方法 内核允许驱动程序指定参数,这些参数可在运行insmod或者modprobe命令装载模块时赋值,modprobe还可以从它的配置文件(/etc/modporb.conf)中读取参数值 ...

  4. react封装基于axios的API请求

    一.最近做的一个后台管理项目,基于antd-pro做的,需要封装基于axios请求,便于开发,直接上代码. import axios from 'axios'; export const Method ...

  5. Android 中更新 UI 的四种方式

    runOnUiThread handler 的 post handler 的 sendMessage View 自身的 post

  6. python之scrapy爬取某集团招聘信息以及招聘详情

    1.定义爬取的字段items.py # -*- coding: utf-8 -*- # Define here the models for your scraped items # # See do ...

  7. CentOS7.5安装python3并设置成系统默认python环境

    1.环境说明 系统版本:CentOS7. 安装的python版本: 2.编译环境准备(如果出现文件解压错误,wget命令无法下载等各种小意外,先把下面的环境安装一遍) yum install zlib ...

  8. partprobe 和 partx 的用法

    partprobe: 用于重读分区表,当出现删除文件后,出现仍然占用空间.可以partprobe在不重启的情况下重读分区. 将磁盘分区表变化信息通知内核,请求操作系统重新加载分区表. -d 不更新内核 ...

  9. 执行kubelet卡、解决

    现象: 执行kubectl get po -o wide 非常卡.慢 原因: 修改node名称造成的, 解决: https://my.oschina.net/u/3390908/blog/164976 ...

  10. 牛客练习赛53 A-E

    牛客联系赛53 A-E 题目链接:Link A 超越学姐爱字符串 题意: 长度为N的字符串,只能有C,Y字符,且字符串中不能连续出现 C. 思路: 其实就是DP,\(Dp[i][c]\) 表示长度为 ...