[CF788B]Weird journey_欧拉回路
Weird journey
题目链接:http://codeforces.com/contest/788/problem/B
数据范围:略。
题解:
我们发现就是要求,把每条无向边拆成两条无向边,其中有两条拆成一条,问这个图有没有欧拉回路。
无向图欧拉回路的充要条件是度数为奇数的点数等于$0$或者$2$。
那么我们的删边方式就分成了三种:
第一种,删任意两个自环。
第二种,删一个自环和任意一条边。
第三种,删两条有公共端点的边,
随便枚举一下就行。
代码:
#include <bits/stdc++.h>
#define N 1000010
using namespace std;
typedef long long ll;
char *p1, *p2, buf[100000];
#define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ )
int rd() {
int x = 0, f = 1;
char c = nc();
while (c < 48) {
if (c == '-')
f = -1;
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x * f;
}
int n, m, t;
ll d[N];
int zh[N];
bool vis[N];
int tot, head[N], nxt[N << 1], to[N << 1];
inline void add(int x, int y) {
to[ ++ tot] = y;
nxt[tot] = head[x];
head[x] = tot;
}
void dfs(int p) {
vis[p] = true;
for (int i = head[p]; i; i = nxt[i]) {
if (!vis[to[i]]) {
dfs(to[i]);
}
}
}
int main() {
n = rd(), m = rd();
for (int i = 1; i <= m; i ++ ) {
int x = rd(), y = rd();
add(x, y), add(y, x);
if (x == y) {
t ++ , zh[x] ++ ;
continue;
}
d[x] ++ , d[y] ++ ;
}
for (int i = 1; i <= n; i ++ ) {
if (d[i]) {
dfs(i);
break;
}
}
for (int i = 1; i <= n; i ++ ) {
if (!vis[i]) {
if (d[i] || zh[i]) {
puts("0");
return 0;
}
}
}
ll ans = 0;
ans += (ll)t * (t - 1) / 2;
ans += (ll)t * (m - t);
for (int i = 1; i <= n; i ++ ) {
if (d[i] >= 2) {
ans += (ll)d[i] * (d[i] - 1) / 2;
}
}
cout << ans << endl ;
return 0;
}
[CF788B]Weird journey_欧拉回路的更多相关文章
- CF788B Weird journey
总共有n个节点,m条路径,要求其中m-2条路径走两遍,剩下2条路径仅走一遍,问不同的路径总数有多少,如果仅走一遍的两条边不同则将这两条路径视为不同. 可以把每条边都拆成两条重边,每条边的度数都是偶数了 ...
- CF788B Weird journey 欧拉路径+计数
给定一张 $n$ 个点 $m$ 条无向边的图(无重边) :定义一种行走方案为:$m-2$ 条边走 $2$ 次,其余 $2$ 条边只走一次. 两个行走方案不同,当且仅当走一次的两条边中有不同的. 一条边 ...
- 【cf789D】Weird journey(欧拉路、计数)
cf788B/789D. Weird journey 题意 n个点m条边无重边有自环无向图,问有多少种路径可以经过m-2条边两次,其它两条边1次.边集不同的路径就是不同的. 题解 将所有非自环的边变成 ...
- ACM/ICPC 之 混合图的欧拉回路判定-网络流(POJ1637)
//网络流判定混合图欧拉回路 //通过网络流使得各点的出入度相同则possible,否则impossible //残留网络的权值为可改变方向的次数,即n个双向边则有n次 //Time:157Ms Me ...
- [poj2337]求字典序最小欧拉回路
注意:找出一条欧拉回路,与判定这个图能不能一笔联通...是不同的概念 c++奇怪的编译规则...生不如死啊... string怎么用啊...cincout来救? 可以直接.length()我也是长见识 ...
- ACM: FZU 2112 Tickets - 欧拉回路 - 并查集
FZU 2112 Tickets Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u P ...
- UVA 10054 the necklace 欧拉回路
有n个珠子,每颗珠子有左右两边两种颜色,颜色有1~50种,问你能不能把这些珠子按照相接的地方颜色相同串成一个环. 可以认为有50个点,用n条边它们相连,问你能不能找出包含所有边的欧拉回路 首先判断是否 ...
- POJ 1637 混合图的欧拉回路判定
题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定 ...
- codeforces 723E (欧拉回路)
Problem One-Way Reform 题目大意 给一张n个点,m条边的无向图,要求给每条边定一个方向,使得最多的点入度等于出度,要求输出方案. 解题分析 最多点的数量就是入度为偶数的点. 将入 ...
随机推荐
- linux 搭建elk6.8.0集群并破解安装x-pack
一.环境信息以及安装前准备 1.组件介绍 *Filebeat是一个日志文件托运工具,在你的服务器上安装客户端后,filebeat会监控日志目录或者指定的日志文件,追踪读取这些文件(追踪文件的变化,不停 ...
- django项目部署上线 nginx + uwsgi
一.安装python3 安装步骤:https://www.cnblogs.com/zhangqigao/p/11661875.html 二.修改django中的配置文件 修改settings.py ( ...
- Python3循环
Python中while语句的一般形式: while 判断条件: 语句 同样需要注意冒号和缩进,另外在Python中没有do…while循环 下面的实例计算1到100总和 ##calc.py n = ...
- zabbix (5) 用户、主机等创建
1.创建新用户: 管理---> 用户--->创建用户 在右上角用户群组这里可以按下拉菜单,为某个组创建用户,默认是all 点击创建用户以后,出现如下图: 2.创建组 管理--->用户 ...
- shell wait 和sleep 对比
wait 在 shell 中使用 wait 是在等待上一批或上一个脚本执行完(即上一个的进程终止),再执行wait之后的命令. sleep sleep 1 睡眠1秒 sleep 1s 睡眠1秒 sle ...
- phpmyadmin个版本漏洞
phpMyadmin各版本漏洞 一: 影响版本:3.5.x < 3.5.8.1 and 4.0.0 < 4.0.0-rc3 ANYUN.ORG 概述:PhpMyAdmin存在PREGREP ...
- JAVA基础知识|Serializable
一.序列化和反序列化 序列化:把对象转换为字节序列的过程称为对象的序列化. 反序列化:把字节序列恢复为对象的过程称为对象的反序列化. 将内存中对象的信息保存下来,可以有很多种方式实现这一功能.其中ja ...
- MindManager2018试用期过后 修改过期时间 破解使用
MindManager2018试用期过后 修改过期时间 破解使用 2019年06月13日 15:58:11 一生中所爱 阅读数 1991更多 分类专栏: 工具软件使用 1.找到路径:C:\User ...
- 骑行川藏--新都桥&塔公草原
新都桥 塔公草原 新都桥,位于四川省甘孜藏族自治州康定市西部地区,距市区81公里: 别名:东俄罗,一个镇名.海拔约3300米,没有突出的标志性景观,沿线有10余公里被称为“摄影家走廊”. 神奇光线,无 ...
- SurfaceView动态背景效果实现
package com.loaderman.customviewdemo; import android.content.Context; import android.graphics.*; imp ...