http://www.lydsy.com/JudgeOnline/problem.php?id=2440

我觉得网上很多题解都没说清楚。。。(还是我太弱了?

首先我们可以将问题转换为判定性问题,即给出一个数$x$,有多少个小于$x$等于的数是不能分解的,即不是完全平方数(不包括1)。

而每个数都可以写成质数积,那么显然只要质数的平方的倍数就可以代替所有数的平方的倍数。

考虑质数个数,假设质数集$P$,那么根据容斥原理,在$[1, x]$范围内的整数不能能分解的个数有:

$$x - (A_{p_1} + A_{p_2} + \cdots + A_{p_k}) + (A_{p_1 \cdot p_2} + A_{p_1 \cdot p_3} + \cdots + A_{p_{k-1} \cdot p_k}) + \cdots + (-1)^{k} A_{\prod_{i=1}^{k} p_i}$$

其中$A_{S}=\left \lfloor \frac{x}{S \cdot S} \right \rfloor$,即$[1, x]$范围内$S|T$的$T$个数。

而我们考虑莫比乌斯函数的定义,发现当$\mu (x)=(-1)^k$的定义恰好是指数均为1的定义!而符号又决定了容斥的符号!哈哈!

所以我们预处理mu后,因为根据每个数的最大平方因子为$\sqrt{x}$,那么我们只要枚举$\sqrt{x}$个数,然后用莫比乌斯来搞就行了!

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
inline const ll getint() { ll r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next) const int N=1e5+10;
int mu[N], p[N], np[N], cnt;
void init() {
mu[1]=1;
for2(i, 2, N) {
if(!np[i]) p[++cnt]=i, mu[i]=-1;
for1(j, 1, cnt) {
int t=p[j]*i;
if(t>=N) break;
np[t]=1;
if(i%p[j]==0) { mu[t]=0; break; }
mu[t]=-mu[i];
}
}
}
ll cal(ll x) {
int s=sqrt(x+0.5); ll ret=0;
for1(i, 1, s) ret+=mu[i]*(x/(1ll*i*i));
return ret;
}
int main() {
init();
int T=getint();
while(T--) {
ll k=getint(), l=1, r=k<<1;
while(l<=r) {
ll mid=(l+r)>>1;
if(cal(mid)>=k) r=mid-1;
else l=mid+1;
}
printf("%lld\n", r+1);
}
return 0;
}

  


Description

小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。 
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。 
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?

Input

包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。 
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。

Output

含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。

Sample Input

4
1
13
100
1234567

Sample Output

1
19
163
2030745

HINT

对于 100%的数据有 1 ≤ Ki ≤ 10^9

,    T ≤ 50

Source

【BZOJ】2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理+二分)的更多相关文章

  1. BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...

  2. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  3. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  4. BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数

    $\sum_{i=1}^n[i==d^2*p]$ 其中p无平方因子$=\sum_{d^2\mid n,d>=2}\sum_{i=1}^{\lfloor {n/d^2} \rfloor} \lef ...

  5. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  6. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  7. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  8. BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4920  Solved: 2389[Submit][Sta ...

  9. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  10. BZOJ 2440 中山市选2011 全然平方数 二分答案+容斥原理+莫比乌斯反演

    题目大意:求第k个无平方因子数是多少(无视原题干.1也是全然平方数那岂不是一个数也送不出去了? 无平方因子数(square-free number),即质因数分解之后全部质因数的次数都为1的数 首先二 ...

随机推荐

  1. spring测试实例

    我们以前要进行单元测试,必须先得到ApplicationContext对象,再通过它得到业务对象,非常麻烦,重复代码也多.基于spring3的单元测试很好的解决了这个问题 基于spring3的单元测试 ...

  2. Java程序员的C++回归路(二)

    接前: 之前记录的笔记,终于想起来上传完整. 第7章: 类 定义抽象数据类型 任何对成员对象的访问都可以解释为使用this来访问,即this->member. =default :默认构造函数. ...

  3. thinkphp session如何取数组

    thinkphp session如何取数组  session('user_auth.username'); 搞定!

  4. OpenERP Web Client设置闲置有效时间

    在Web Client端使用OpenERP时,默认的cookie有效时间是浏览器的当前作业窗口,这样就是说只要你不关闭浏览器,不管闲置多长时间,当前的连线都是有效的.这样就会有安全问题,如果你忘了登出 ...

  5. android开发之数据库游标未关闭导致

    replacements=[Ljava.lang.String;@4192fea8HARDWARE=hw7d501lmatchers=[Ljava.lang.String;@4192fe28RADIO ...

  6. C#中将图片转化成base64字符串

    厂址:http://www.cnblogs.com/yunfeifei/p/4165351.html 1.在C#中将图片转化成base64字符串: using System; using System ...

  7. MySQL主从不一致情形与解决方法

    参考:https://blog.csdn.net/hardworking0323/article/details/81046408 https://blog.csdn.net/lijingkuan/a ...

  8. location 禁止多目录

    [root@web01 default]# mkdir cron templates [root@web01 default]# tree . ├── cron └── templates direc ...

  9. iOS 开发如何入门

    iOS 开发如何入门 新人如何入门 上一篇文章的回复中,很多读者让我推荐入门图书.其实我觉得每个人可能有自己喜欢的学习方式,我习惯的不一定适合你.不过我可以分享一下我当时是如何学习 iOS 开发的. ...

  10. dp之完全背包poj3181(高精度背包)

    这个题目要用到大数的加法,其他的,我没有感觉到有什么难想的......比较水的背包题,掠过..... #include<iostream> #include<stdio.h> ...