[acmm week12]染色(容斥定理+组合数+逆元)
|
Time Limit: 1sec Memory Limit:256MB
Description
今天离散数学课学了有关树的知识,god_v是个喜欢画画的人,所以他喜欢对于一棵树上色,且相邻节点不能染相同颜色,他有k种颜色,他希望他染色完后,这棵树上每种颜色都有,他想请教你有多少种染色方案?由于方案数过大,输出对1e9+7取模的结果。 Input
第一行 n,k表示树的节点和颜色数量(1<=k<=n<=100000) 第二行 n-1个数字,第i个数字表示第i+1个节点的父亲的编号,(f[i]<i+1)
Output
一个数字,表示方案数(%1e9+7) Sample InputCopy
6 4 Sample OutputCopy
600 |
题解:
如果不限制k种颜色全部用上,则方案数为f[k]=k*(k-1)^(n-1)(根节点有k种选择,其他节点有k-1种选择)。限制后,我们可以用容斥定理:ans=f[k] - C(k-1,k)*f[k-1] + C(k-2,k)*f[k-2] - .... + (-1)^(k-1) * C(1,k) * f[1];
f:用快速幂求出
线性求C(i,k) (1<=i<=k):C(i,k) = C(i-1,k) * (i-k+1) / i; 设mod=10^9+7,由于最后答案要%mod,则除以i要转化为乘以i在%mod下的逆元。
线性求逆元: inv[i]=((mod-mod/i))*inv[mod%i]%mod;(inv[i]为i的逆元,emm这里也可以用费马小定理来求)
O(nlogn)
#include<bits/stdc++.h>
using namespace std; typedef long long LL;
const LL mod=1e9 + ;
const int N=;
LL c[N],inv[N]; void cal_c(int k)
{
inv[]=;
for(LL i=;i<=k;i++)
{
inv[i]=((mod-mod/i))*inv[mod%i]%mod;
}
c[]=;
for(LL i=;i<=k;i++) c[i]=c[i-]*(k-i+)%mod*inv[i]%mod;
} LL pow(LL x,LL y)
{
LL ans=;
while(y)
{
if(y&) ans=ans*x%mod;
x=x*x%mod;
y/=;
}
return ans;
} int main()
{
//freopen("a.in","r",stdin);
LL n,k;
scanf("%lld%lld",&n,&k);
cal_c(k);
LL ans=,f=,now;
for(LL i=k;i>=;i--)
{
now=(((c[i]*i)%mod)*pow(i-,n-))%mod;
ans=(ans+f*now+mod)%mod;
f=-f;
}
printf("%lld\n",ans);
return ;
}
[acmm week12]染色(容斥定理+组合数+逆元)的更多相关文章
- HDU 1796How many integers can you find(简单容斥定理)
How many integers can you find Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 ...
- UVA-11806 Cheerleaders 计数问题 容斥定理
题目链接:https://cn.vjudge.net/problem/UVA-11806 题意 在一个mn的矩形网格里放k个石子,问有多少方法. 每个格子只能放一个石头,每个石头都要放,且第一行.最后 ...
- Codeforces Round #330 (Div. 2) B. Pasha and Phone 容斥定理
B. Pasha and Phone Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/595/pr ...
- hdu_5213_Lucky(莫队算法+容斥定理)
题目连接:hdu_5213_Lucky 题意:给你n个数,一个K,m个询问,每个询问有l1,r1,l2,r2两个区间,让你选取两个数x,y,x,y的位置为xi,yi,满足l1<=xi<=r ...
- How Many Sets I(容斥定理)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3556 How Many Sets I Time Limit: 2 ...
- HDU - 4135 Co-prime 容斥定理
题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...
- BZoj 2301 Problem b(容斥定理+莫比乌斯反演)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 7732 Solved: 3750 [Submi ...
- BZOJ2839 : 集合计数 (广义容斥定理)
题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- Spring学习(五)——Spring注解(一)
---恢复内容开始--- 概述 注释配置相对于 XML 配置具有很多的优势: 它可以充分利用 Java 的反射机制获取类结构信息,这些信息可以有效减少配置的工作.如使用 JPA 注释配置 ORM 映射 ...
- Mware中CentOS设置静态IP
Mware中CentOS设置静态IP 因为之前搭建的MongoDB分片没有采用副本集,最近现网压力较大,所以准备研究一下,于是在自己电脑的虚拟机中搭建环境,但是发现之前VMware设置的是DHCP ...
- linux svn启动和关闭
linux svn启动和关闭 博客分类: linux系统 svnlinux 1,启动SVN sudo svnserve -d -r /home/data/svn/ 其中 -d 表示守护进程, -r ...
- win7仿win98电脑主题
http://ys-d.ys168.com/599631823/S7hMfgo3M382J764IOJ8/plus98_for_windows_7_by_ansonsterling.zip
- C# 为VB6.0程序模拟串口数据
为VB6.0编写程序模拟数据测试使用. 一.VB6.0 控件MSComm,来发送接收串口数据 CommPort 属性设置并返回通讯端口号,虚拟端口为COM2. Settings 属性设置并返回端口的波 ...
- canvas - 炫酷的3D星空
1.国际惯例,先上效果 (⊙o⊙)… 效果图看上去效果并不很炫酷啊,直接戳 这里 看效果吧! 2代码部分 html: <canvas id="canvas" width=&q ...
- BZOJ3622 已经没有什么好害怕的了(动态规划+容斥原理)
显然可以转化为一个阶梯状01矩阵每行每列取一个使权值和为k的方案数.直接做不可做,考虑设f[i][j]为前i行权值和至少为j,即在其中固定了j行选1的方案数.设第i行从1~a[i]列都是1且a[i]+ ...
- 【EF】EntityFramework DBFirst的使用
一.前言 久闻EF大名,之前做C/S产品用的是Dapper对SqlLite进行ORM.然后接触公司授权系统后发现用的是EntityFramework对SQLSever进行ORM.授权系统 ...
- 【BZOJ2007】【NOI2010】海拔(最小割,平面图转对偶图,最短路)
[BZOJ2007][NOI2010]海拔(最小割,平面图转对偶图,最短路) 题面 BZOJ 洛谷 Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域. ...
- python基础(4)
条件判断和循环 条件判断 计算机之所以能做很多自动化的任务,因为它可以自己做条件判断. 比如,输入用户年龄,根据年龄打印不同的内容,在Python程序中,用if语句实现: age = 20 if ag ...