预测结果为1到11中的1个

首先加载数据,训练数据,训练标签,预测数据,预测标签:

if __name__=="__main__":  

    importTrainContentdata()
importTestContentdata()
importTrainlabeldata()
importTestlabeldata()
traindata = []
testdata = []
trainlabel = []
testlabel = [] def importTrainContentdata():
file = 'F:/goverment/myfinalcode/train_big.csv'
fo=open(file)
ls=[]
for line in fo:
line=line.replace("\t",",")
line=line.replace("\n",",")
line=line.replace("\"",",")
ls.append(line.split(","))
for i in ls:
li=[]
for j in i:
if j == '':
continue
li.append(float(j))
traindata.append(li) def importTestContentdata():
file = 'F:/goverment/myfinalcode/test_big.csv'
fo=open(file)
ls=[]
for line in fo:
line=line.replace("\t",",")
line=line.replace("\n",",")
line=line.replace("\"",",")
ls.append(line.split(","))
for i in ls:
li=[]
for j in i:
if j == '':
continue
li.append(float(j))
testdata.append(li) #导入类别的训练和测试数据
def importTrainlabeldata():
file = 'F:/goverment/myfinalcode/train_big_label.xls'
wb = xlrd.open_workbook(file)
ws = wb.sheet_by_name("Sheet1")
for r in range(ws.nrows):
col = []
for c in range(1):
col.append(ws.cell(r, c).value)
trainlabel.append(col) def importTestlabeldata():
file = 'F:/goverment/myfinalcode/test_big_label.xls'
wb = xlrd.open_workbook(file)
ws = wb.sheet_by_name("Sheet1")
for r in range(ws.nrows):
col = []
for c in range(1):
col.append(ws.cell(r, c).value)
testlabel.append(col)

其中训练数据,预测数据是csv文件格式,而且是str,要转为float并一排排放入lis,然后将所有lis放入traindata或testdata中,但csv中是以","隔开的,所以要将"\t"等都转为",",需要利用

ls.append(line.split(","))放入ls中,但仍然是str型的,我又另外转化成了float,后来发
现不转化也是可以的,可能它后来会在即转化吧。 之后运用多种分类器,调参数参考
http://scikit-learn.org/stable/supervised_learning.html#supervised-learning 然后选出尽量好的分类器,提高准确率
 '''
#19%
from sklearn import neighbors
knn=neighbors.KNeighborsClassifier(n_neighbors=75, leaf_size=51, weights='distance',p=2)
knn.fit(traindata, trainlabel)
predict=knn.predict(testdata)
''' '''
#这个不行
from sklearn.neural_network import MLPClassifier
import numpy as np
traindata = np.array(traindata)#TypeError: cannot perform reduce with flexible type
traindata = traindata.astype(float) trainlabel = np.array(trainlabel)
trainlabel = trainlabel.astype(float) testdata=np.array(testdata)
testdata = testdata.astype(float)
model=MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto',
beta_1=0.9, beta_2=0.999, early_stopping=False,
epsilon=1e-08, hidden_layer_sizes=(5, 2), learning_rate='constant',
learning_rate_init=0.001, max_iter=200, momentum=0.9,
nesterovs_momentum=True, power_t=0.5, random_state=1, shuffle=True,
solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False,
warm_start=False)
model.fit(traindata, trainlabel)
predict = model.predict(testdata)
''' '''
#19%
from sklearn.tree import DecisionTreeClassifier
model=DecisionTreeClassifier(class_weight='balanced',max_features=68,splitter='best',random_state=5)
model.fit(traindata, trainlabel)
predict = model.predict(testdata) 这个不行
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB(alpha=0.052).fit(traindata, trainlabel)
#clf.fit(traindata, trainlabel)
predict=clf.predict(testdata)
''' '''17%
from sklearn.svm import SVC
clf = SVC(C=150,kernel='rbf', degree=51, gamma='auto',coef0=0.0,shrinking=False,probability=False,tol=0.001,cache_size=300, class_weight=None,verbose=False,max_iter=-1,decision_function_shape=None,random_state=None)
clf.fit(traindata, trainlabel)
predict=clf.predict(testdata)
''' '''0.5%
from sklearn.naive_bayes import GaussianNB
import numpy as np
gnb = GaussianNB()
traindata = np.array(traindata)#TypeError: cannot perform reduce with flexible type
traindata = traindata.astype(float)
trainlabel = np.array(trainlabel)
trainlabel = trainlabel.astype(float)
testdata=np.array(testdata)
testdata = testdata.astype(float)
predict = gnb.fit(traindata, trainlabel).predict(testdata)
''' '''16%
from sklearn.naive_bayes import BernoulliNB
import numpy as np
gnb = BernoulliNB()
traindata = np.array(traindata)#TypeError: cannot perform reduce with flexible type
traindata = traindata.astype(float) trainlabel = np.array(trainlabel)
trainlabel = trainlabel.astype(float) testdata=np.array(testdata)
testdata = testdata.astype(float)
predict = gnb.fit(traindata, trainlabel).predict(testdata)
''' from sklearn.ensemble import RandomForestClassifier
forest = RandomForestClassifier(n_estimators=500,random_state=5, warm_start=False, min_impurity_decrease=0.0,min_samples_split=15) # 生成随机森林多分类器 predict = forest.fit(traindata, trainlabel).predict(testdata)

输出准确率,我还把预测结果输出到txt中,方便分析。

s=len(predict)

    f=open('F:/goverment/myfinalcode/predict.txt', 'w')
for i in range(s):
f.write(str(predict[i]))
f.write('\n')
f.write("写好了")
f.close() k=0
print(s) for i in range(s):
if testlabel[i] == predict[i]:
k=k+1
print("精度为:",k*1.0/s)
接下来是输出所有标签的支持度
    print('我要开始输出支持度啦')
attribute_proba=forest.predict_proba(testdata)
#print(forest.predict_proba(testdata))#输出各个标签的概率
print(type(attribute_proba)) import xlwt
myexcel = xlwt.Workbook()
sheet = myexcel.add_sheet('sheet')
si=-1
sj=-1
for i in attribute_proba:
si=si+1
for j in i:
sj=sj+1
sheet.write(si,sj,str(j))
sj=-1
myexcel.save("attribute_proba_small.xls")

运行结果如下:

但是这样还不够,我还要输出前3个的预测结果的编号和支持度。
我开了个类attri,key用来放编号,weight则放支持度。
之后对每一条记录的所有的预测概率(支持度)遍历3次。每次找出概率最大的一个,挑出后把编号和
概率存好,并把这个值变为0,再寻找挑出最大的一个,循环3次。存好后输出到excel
    '''接下来输出每组概率最大的四个的编号'''
class attri:
def __init__(self):
self.key=0
self.weight=0.0
label=[]
for i in attribute_proba:
lis=[]
k=0
while k<3:
k=k+1
p=1
mm=0
sj=-1
for j in i:
sj=sj+1
if j>mm:
mm=j
p=sj
i[p]=0#难道是从1开始?我一开始写了i【p-1】但debug时发现不对
a=attri()
a.key=p
a.weight=mm
lis.append(a)
label.append(lis)
print('挑几个输出')
import xlwt
myexcel = xlwt.Workbook()
sheet = myexcel.add_sheet('sheet')
si=-2
sj=-1
for i in label:
si=si+2
for j in i:
sj=sj+1
sheet.write(si,sj,str(j.key))
sheet.write(si+1,sj,str(j.weight))
sj=-1
myexcel.save("proba_big.xls")

运行结果如下:

自学得真辛苦啊,这些都是我的学习成果,准确还是可以在提高的,对你有帮助的话,点个赞吧,嘿嘿。

python多分类预测模版,输出支持度,多种分类器,str的csv转float的更多相关文章

  1. R_Studio(关联)使用apriori函数简单查看数据存在多少条关联规则,并按支持度降序排序输出

    查看数据menu_orders.txt文件存在多少条关联规则,并按支持度降序排序输出 #导入arules包 install.packages("arules") library ( ...

  2. 分类预测输出precision,recall,accuracy,auc和tp,tn,fp,fn矩阵

    此次我做的实验是二分类问题,输出precision,recall,accuracy,auc # -*- coding: utf-8 -*- #from sklearn.neighbors import ...

  3. 使用LIBSVM工具实现样本分类预测——MatLab

    准备工作: https://www.csie.ntu.edu.tw/~cjlin/libsvm/,下载LIBSVM:(LIBSVM工具相较于MATLAB自带的工具:1).支持多分类及回归(‘-s 0’ ...

  4. 【机器学习具体解释】SVM解二分类,多分类,及后验概率输出

    转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51073885 CSDN−勿在浮沙筑高台 支持向量机(Support Vecto ...

  5. 贝叶斯--旧金山犯罪分类预测和电影评价好坏 demo

    来源引用:https://blog.csdn.net/han_xiaoyang/article/details/50629608 1.引言 贝叶斯是经典的机器学习算法,朴素贝叶斯经常运用于机器学习的案 ...

  6. 读论文《BP改进算法在哮喘症状-证型分类预测中的应用》

    总结: 一.研究内容 本文研究了CAL-BP(基于隐层的竞争学习与学习率的自适应的改进BP算法)在症状证型分类预测中的应用. 二.算法思想 1.隐层计算完各节点的误差后,对有最大误差的节点的权值进行正 ...

  7. 13、Selenium+python+API分类总结

    Selenium+python+API分类总结 http://selenium-python.readthedocs.org/index.html 分类 方法 方法描述 客户端操作 __init__( ...

  8. 【每日一个小技巧】Python | input的提示信息换行输出,提示信息用变量表示

    [每日一个小技巧]Python | input的提示信息换行输出,提示信息用变量表示 在书写代码的途中,经常会实现这样功能: 请输入下列选项前的序号: 1.选择1 2.选择2 3.选择3 在pytho ...

  9. 使用BERT进行情感分类预测及代码实例

    文章目录 0. BERT介绍 1. BERT配置 1.1. clone BERT 代码 1.2. 数据处理 1.2.1预训练模型 1.2.2数据集 训练集 测试集 开发集 2. 修改代码 2.1 加入 ...

随机推荐

  1. 平衡二叉树(AVL)的实现,附可运行C语言代码

    最近几月一直在自学C语言和数据结构,先是写了排序二叉树,觉得平衡二叉树作为一个经典数据结构,有必要实现一下. 网上看了些资料,在AVL和红黑树之间考虑,最后个人还是倾向于AVL. 不同于标准AVL的是 ...

  2. PostgreSQL 9.6 同步多副本、remote_apply记录

    摘自:https://yq.aliyun.com/articles/61274 同步多副本配置方法 参数配置如下 synchronous_standby_names (string) 支持两种写法 n ...

  3. Linux:grub密码设置与修改

    grub密码设置与修改 默认GRUB启动参数可以的进入单用户模式从而修改root密码,如果想要给GRUB菜单设置密码,可以修改/etc/grub.conf文件 (/boot/grub/grub.con ...

  4. Java之JVM逃逸分析

    引言: 逃逸分析(Escape Analysis)是众多JVM技术中的一个使用不多的技术点,本文将通过一个实例来分析其使用场景. 概念 逃逸分析,是一种可以有效减少Java 程序中同步负载和内存堆分配 ...

  5. Photon——Feature Overview 功能概述

    Photon——Feature Overview 功能概述   Feature Overview 功能概述        Photon is a real-time socket server and ...

  6. jQuery AJAX 与 jQuery 事件

    jQuery 本身即是为事件处理而特别设计的,jQuery 事件处理方法是 jQuery 中的核心函数. $(function() { ... }); 是如下格式的缩写: $(document).re ...

  7. 【排序】冒泡排序,C++实现

    原创文章,转载请注明出处! 博客文章索引地址 博客文章中代码的github地址 # 基本思想(从小到大排序)       对于给定的n个元素,从第一个元素开始,依次对相邻的两个元素进行比较,当前面的记 ...

  8. sersync2 文件的实时同步备份

    |——需求: 监控192.168.9.5[主]  下的 /data/vmeipai 目录  --> 同步到 192.168.12.8 [备] 下的 /data/vmeipai 目录 |——网络拓 ...

  9. 对Json的各种遍历方法

    慎用for in函数(有可能由于原型链的问题导致遍历问题): 如果要是用for in  一定要使用if (obj1.hasOwnProperty(key)) {}先做判断 解决方法 :1.eval() ...

  10. Balanced Substring

    You are given a string s consisting only of characters 0 and 1. A substring [l, r] of s is a string ...