关于GCD的几个结论
设a和b的最大公约数是d,那么:
1. d是用sa+tb(s和t都是整数)能够表示的最小正整数
证明:设x=sa+tb是sa+tb能够表示出的最小正整数。首先,有d|x,证明如下:
因此有x>=d,现在只要证明x是公约数,就可以证明x就是这个最大公约数了。只需证明x|a且x|b。
先证x|a。设a=qx+r(q是自然数,0<=r<x),那么r=a-qx=a-q(sa+tb)=(1-qs)a+(-qt)b。可以看出r也满足Sa+Tb这种形式,假如r也是正整数的话,r<x,那么与x是Sa+Tb这种形式的最小正整数矛盾。因此假设不成立,r不是正整数。所以r=0。所以有x|a。
证x|b同理。
所以命题得证。有结论:存在整数s,t使得sa+tb=d,其中d=gcd(a,b)。并且d是形如sa+tb的所有正整数里最小的。
2. c是a和b的公约数,那么c|d
证明:由命题1,存在整数s,t,使得sa+tb=d。由于a=pc,b=qc(p,q都是正整数),所以d=spc+tqc=(sp+tq)c。所以c|d。
所以命题得证。有结论:任何公约数都整除最大公约数。
3. 如果c|d,那么有c|a且c|b
证明:显然有d|a且d|b。由整除的传递性,就有c|a且c|b。
由命题2和命题3得出推论:一个数整除最大公约数,跟这个数分别整除这两个数是等价的条件。
这是今天在看莫比乌斯反演的时候有一步转化没有看懂,就在这里推了一下。
关于GCD的几个结论的更多相关文章
- 清北澡堂 Day2 下午 一些比较重要的数论知识整理
1.欧拉定理 设x1,x2,.....,xk,k=φ(n)为1~n中k个与n互质的数 结论一:axi与axj不同余 结论二:gcd(axi,n)=1 结论三:x1,x2,...,xk和ax1,ax2, ...
- 清北学堂Day2
算数基本定理: 1.整数及其相关 2.唯一分解定理 对于任意的大于1的正整数N,N一定能够分解成有限个质数的乘积,即 其中P1<P2<...<Pk,a1,a2,...,ak>= ...
- POJ2480:Longge's problem(欧拉函数的应用)
题目链接:传送门 题目需求: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N ...
- [日常训练]AekdyCoin的跳棋
Description $AekdyCoin$正在玩一个游戏,该游戏要用到两副牌和一个数轴和一个棋子. 刚开始的时候棋子位于数轴的$0$位置.然后$AekdyCoin$交替的从两副牌中抽取一张牌,然后 ...
- [hiho1584]Bounce
题意:找出图中经过一次的格子个数. 解题关键: 组合数学的思想:先找出总的经过格子的次数,然后减去2倍的经过2次的格子个数. 1.总的求法:将长延展,当延展到n倍时,能够恰好到达右边的两个端点,则总格 ...
- 有关Gcd,Lcm的一点小结论
先介绍两个: 大数的Gcd Stein+欧几里德 function stein(a,b:int64):int64; begin if a<b then exit(stein(b,a)); the ...
- luogu 3166 组合与gcd(数三角形)结论
在n*m的点格图中选取三个点满足三角形的个数 结论:点(x1,y1)和(x2,y2) 中间有gcd(x2-x1,y2-y1)+1个和两点连成的线段直线共线 那么大力枚举 x2-x1和y2-y1,然后发 ...
- 【20181027T1】洛阳怀【推结论+线性筛+分解质因数+GCD性质】
原题:CF402D [错解] 唔,先打个表看看 咦,没有坏质数好像就是质因数个数啊 那有坏质数呢? 好像变负数了 推出错误结论:f(x)=x的质因数个数,如果有个坏质数,就乘上-1 然后乱搞,起码花了 ...
- 【bzoj2005】 [Noi2010]能量采集 数学结论(gcd)
[bzoj2005] [Noi2010]能量采集 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...
随机推荐
- vscode中安装使用markdown 插件
linux中好用的IDE vscode是微软推出的一款好用免费的IDE,可以快速部署开发环境,所说配置有些繁琐,但是瑕不掩瑜.它同时支持很多种拓展的编辑器,MarkDown只是其中的一种. 安装 ...
- CentOS7.2 部署Haproxy 1.7.2
原文发表于cu:2017-03-16 参考文档: haproxy:http://www.haproxy.org/ 本文涉及haproxy的安装,并做简单配置. 一.环境准备 1. 操作系统 CentO ...
- 译 - 高可用的mesos计算框架设计
原文地址 http://mesos.apache.org/documentation/latest/high-availability-framework-guide/ 阅读建议:有写过或者看过Mes ...
- ECharts之force力导向布局图——数据源说明及后端API约定
Echarts ? 关于 Echarts 请移步这里 force 力导向图 实现方式,如: function require_EC () { require( [ 'echarts', //载入for ...
- PHP autoload与spl_autoload自动加载机制的深入理解
PHP autoload与spl_autoload自动加载机制的深入理解 作者: 字体:[增加 减小] 类型:转载 时间:2013-06-05我要评论 本篇文章是对PHP中的autoload与spl_ ...
- Alpha冲刺——第五天
Alpha第五天 听说 031502543 周龙荣(队长) 031502615 李家鹏 031502632 伍晨薇 031502637 张柽 031502639 郑秦 1.前言 任务分配是VV.ZQ. ...
- lintcode-427-生成括号
427-生成括号 给定 n 对括号,请写一个函数以将其生成新的括号组合,并返回所有组合结果. 样例 给定 n = 3, 可生成的组合如下: "((()))", "(()( ...
- .net 错误处理
第一步在页面中写OnError方法: protected override void OnError(EventArgs e) { Exception ex = Server.GetLastError ...
- React.js + LiveReload配置详解
一.介绍一下LiveReload: LiveReload monitors changes in the file system. As soon as you save a file, it is ...
- 安恒杯-babysql
1. 库名 ?id= and extractvalue(,(select group_concat(0x3a,schema_name) from information_schema.schemata ...