设a和b的最大公约数是d,那么:

1. d是用sa+tb(s和t都是整数)能够表示的最小正整数

  证明:设x=sa+tb是sa+tb能够表示出的最小正整数。首先,有d|x,证明如下:

    因此有x>=d,现在只要证明x是公约数,就可以证明x就是这个最大公约数了。只需证明x|a且x|b。

    先证x|a。设a=qx+r(q是自然数,0<=r<x),那么r=a-qx=a-q(sa+tb)=(1-qs)a+(-qt)b。可以看出r也满足Sa+Tb这种形式,假如r也是正整数的话,r<x,那么与x是Sa+Tb这种形式的最小正整数矛盾。因此假设不成立,r不是正整数。所以r=0。所以有x|a。

    证x|b同理。

  所以命题得证。有结论:存在整数s,t使得sa+tb=d,其中d=gcd(a,b)。并且d是形如sa+tb的所有正整数里最小的。

2. c是a和b的公约数,那么c|d

  证明:由命题1,存在整数s,t,使得sa+tb=d。由于a=pc,b=qc(p,q都是正整数),所以d=spc+tqc=(sp+tq)c。所以c|d。

  所以命题得证。有结论:任何公约数都整除最大公约数。

3. 如果c|d,那么有c|a且c|b

  证明:显然有d|a且d|b。由整除的传递性,就有c|a且c|b。

  由命题2和命题3得出推论:一个数整除最大公约数,跟这个数分别整除这两个数是等价的条件。

  这是今天在看莫比乌斯反演的时候有一步转化没有看懂,就在这里推了一下。

  

关于GCD的几个结论的更多相关文章

  1. 清北澡堂 Day2 下午 一些比较重要的数论知识整理

    1.欧拉定理 设x1,x2,.....,xk,k=φ(n)为1~n中k个与n互质的数 结论一:axi与axj不同余 结论二:gcd(axi,n)=1 结论三:x1,x2,...,xk和ax1,ax2, ...

  2. 清北学堂Day2

    算数基本定理: 1.整数及其相关 2.唯一分解定理 对于任意的大于1的正整数N,N一定能够分解成有限个质数的乘积,即 其中P1<P2<...<Pk,a1,a2,...,ak>= ...

  3. POJ2480:Longge's problem(欧拉函数的应用)

    题目链接:传送门 题目需求: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N ...

  4. [日常训练]AekdyCoin的跳棋

    Description $AekdyCoin$正在玩一个游戏,该游戏要用到两副牌和一个数轴和一个棋子. 刚开始的时候棋子位于数轴的$0$位置.然后$AekdyCoin$交替的从两副牌中抽取一张牌,然后 ...

  5. [hiho1584]Bounce

    题意:找出图中经过一次的格子个数. 解题关键: 组合数学的思想:先找出总的经过格子的次数,然后减去2倍的经过2次的格子个数. 1.总的求法:将长延展,当延展到n倍时,能够恰好到达右边的两个端点,则总格 ...

  6. 有关Gcd,Lcm的一点小结论

    先介绍两个: 大数的Gcd Stein+欧几里德 function stein(a,b:int64):int64; begin if a<b then exit(stein(b,a)); the ...

  7. luogu 3166 组合与gcd(数三角形)结论

    在n*m的点格图中选取三个点满足三角形的个数 结论:点(x1,y1)和(x2,y2) 中间有gcd(x2-x1,y2-y1)+1个和两点连成的线段直线共线 那么大力枚举 x2-x1和y2-y1,然后发 ...

  8. 【20181027T1】洛阳怀【推结论+线性筛+分解质因数+GCD性质】

    原题:CF402D [错解] 唔,先打个表看看 咦,没有坏质数好像就是质因数个数啊 那有坏质数呢? 好像变负数了 推出错误结论:f(x)=x的质因数个数,如果有个坏质数,就乘上-1 然后乱搞,起码花了 ...

  9. 【bzoj2005】 [Noi2010]能量采集 数学结论(gcd)

    [bzoj2005] [Noi2010]能量采集 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

随机推荐

  1. 会声会影2018提示dll文件丢失怎么办?

    一些会声会影2018用户,在安装.使用软件的过程中,会出现dll缺失的提示,导致软件无法打开,那么,出现这一问题要怎么解决.接下来小编为大家具体介绍下两种解决方法. 图1:dll丢失提示 打开会声会影 ...

  2. clone中的浅复制和深复制

    clone:用于两个对象有相同的内容时,进行复制操作. 提示:Java中要想自定义类的对象可以被复制,自定义类就必须实现Cloneable中的clone()方法. 浅复制:另一个对象用clone()方 ...

  3. 第10次Scrum会议(10/22)【欢迎来怼】

    一.小组信息 队名:欢迎来怼小组成员队长:田继平成员:李圆圆,葛美义,王伟东,姜珊,邵朔,冉华小组照片 二.开会信息 时间:2017/10/22 17:20~17:33,总计13min.地点:东北师范 ...

  4. c# WPS DLL及其调用

    1.dll分享(含xsl及docx的dll) 链接:https://pan.baidu.com/s/1c1ImV14OndmvIb4W-_WL2A 密码:d2rx 2.方法: 1.先在类的前面(类外面 ...

  5. [CF] Sasha and One More Name

    题目大意 就是给一个回文串,然后进行k次分割,产生k+1个字符子串,通过重新组合这k+1个字符字串,是否会出现新的不同的回文串,且最少需要分割几段.无法产生新的回文串则输出"Impossib ...

  6. 福大软工1816 ·软工之404NoteFound团队选题报告

    目录 NABCD分析引用 N(Need,需求): A(Approach,做法): B(Benefit,好处): C(Competitors,竞争): D(Delivery,交付): 初期 中期 个人贡 ...

  7. IDEA + SSH OA 第一天(项目收获:Hibernate XML)

    之前都是用工具逆向生成代码,很少写配置文件,今天试着使用,有几点需要注意 Cascade(级联): Cascade代表是否执行级联操作,Inverse代表是否由己方维护关系. Cascade属性的可能 ...

  8. lintcode-248-统计比给定整数小的数的个数

    248-统计比给定整数小的数的个数 给定一个整数数组 (下标由 0 到 n-1,其中 n 表示数组的规模,数值范围由 0 到 10000),以及一个 查询列表.对于每一个查询,将会给你一个整数,请你返 ...

  9. C++ auto_ptr智能指针的用法

    C++中指针申请和释放内存通常采用的方式是new和delete.然而标准C++中还有一个强大的模版类就是auto_ptr,它可以在你不用的时候自动帮你释放内存.下面简单说一下用法. 用法一: std: ...

  10. 重写JdbcRDD支持Sql命名参数和分区

    Spark提供的JdbcRDD很不好用,没法指定命名参数,而且必须要提供两个Long类型的参数表示分区的范围,如果数据表没有long类型的字段或者不需要条件,那就不能用JdbcRDD了.这里我简单重写 ...