2017 NEERC

Problem A. Archery Tournament

题目描述:在二维平面上,会陆续出现一些圆,以及一些询问,询问点是否在圆内,如果是,则输出那个圆,并把那个圆删掉,否则输出\(-1\)。注意:这些圆均与\(x\)轴相切,并且这些圆不会相交。

solution

因为这些圆都与\(x\)轴相切,所以经过直线\(x=x'\)的圆不会超过\(log\)个。所以只要找出询问点的左右\(log\)个圆逐一判断即可。

时间复杂度:\(O(nlog10^9)\)

Problem B. Box

题目描述:用一张\(n \times m\)的网格纸,折出\(a \times b \times c\)的长方体。输出是否可解。注意:折痕只能是网格线。

solution

题解:答案只有两种情况:

  1. \(3b+a+c \leq w\)且\(a+c \leq h\)。
  2. \(2a+2c \leq w\)且\(a+2c \leq h\)。

    \(a, b, c, w, h\)全部组合一下。

时间复杂度:\(O(1)\)

Problem C. Connections

题目描述:给出一个顶点数为\(n\)的有向图,删掉一些边,使得只剩下\(2n\)条边,且任意两点能互相到达。

solution

从\(1\)开始搜索,搜到的边为留下的边。然后将边的方向全部相反,从\(1\)开始搜索,搜到的边也是留下的边。这样就有至多\(2n-2\)条边,剩下的随便补足\(2n\)条就好了。

时间复杂度:\(O(n)\)

Problem D. Designing the Toy

题目描述:给出一个由\(1 \times 1 \times 1\)方块组成的立体图形的正视图、侧视图、俯视图的面积,问是否存在一种堆积方式,满足题目所给的数据。

solution

假设面积分别是\(a, b, c, c \geq max(a, b)\),将面积为\(a\)的面变成\(a \times q\),面积为\(b\)的面变成\(b \times 1\),然后就相当于在一个\(n \times m\)的网格中填\(c\)个格子,所以如果\(c>ab\),则无解;否则先填满对角线,剩下的随便填就好了。之所以把面变成\(a \times 1\)和\(b \times 1\),是因为这样子能填的方块最多,即\(ab\)。

时间复杂度:\(O(c)\)

Problem E. Easy Quest

题目描述:有\(n\)个关卡,每个关卡为一个数字\(a_i\)。如果\(a_i>0\),则是武器,如果\(a_i<0\),则是怪兽,只能用值为\(-a_i\)的武器杀死,如果\(a_i=0\),则可以生成一个任意值的武器。问是否能通关,若能,则每个\(a_i=0\)应该生成什么武器。

solution

贪心,尽量先用已有的武器,再用能生成任意值的武器。

时间复杂度:\(O(n)\)

Problem F. The Final Level

题目描述:用长度为\(n\)的\(L\)型方块摆在二维网格平面上,仅通过方块从\((0, 0)\)走到\((a, b)\)。输出方案。

solution

为了方便,可以先将\((a, b)\)映射到第一象限。然后贪心构造方案。可以逆着构造,zhe这样对于边界的判断会方便一些。

时间复杂度:\(O(n)\),\(n\)为方块数

Problem G. The Great Wall

题目描述:现要建一堵长度为\(n\)的墙。第\(i\)段墙有三个属性值\(a_i, b_i, c_i\)。现给定一个值\(r\)。自行选定两个值\(x, y\),形成两个区间\([x, x+r-1], [y, y+r-1]\),这两个区间必须包含于\([1, n]\)。\(x, y\)对应的墙的值为\(\sum v_i\),当\(i\)不属于任一区间时,\(v_i=a_i\);当\(i\)只属于一个区间时,\(v_i=b_i\);当\(i\)属于两个区间时,\(v_i=c_i\)。求出第\(k\)小的墙的值。

solution

先将\(b_i-=a_i, c_i-=a_i, a_i=0\)。

二分答案\(value\),判断有多少个数对\((x, y)\)小于等于\(value\)。

先处理区间不相交的情况。预处理\(h_i=\sum_{j=0}^{r-1} b_{i+j}\),枚举\(i\),假设\(y=i\),然后用\(multiset\)之类的数据结构,计算出有多少对\((x, y)\)小于等于\(value\)。

接着就是构造两个函数。

\[g_i=\sum_{j=1}^{i-1} c_j-2b_j + \sum_{j=i}^{i+r-1} c_j-b_j
\]

\[f_i=\sum_{j=1}^{i-1} 2b_j-c_j + \sum_{j=i}^{i+r-1} b_j
\]

这样,数对\((x, y)\)的相交区间的值为\(g_x+f_y\)。这样就可以用与上面一样的方法来求出有多少对\((x, y)\)小于等于\(value\)。

时间复杂度:\(O(nlogn)\)

Problem H. Hack

题目描述

1 modPow(a, d, n) {
2 r = 1;
3 for (i = 0; i < 60; ++i) {
4 if ((d & (1 << i)) != 0) {
5 r = r * a % n;
6 }
7 a = a * a % n;
8 }
9 }

其中只有第\(5, 7\)行耗时间,若表达式为\(x*y%n\),则时间为\((bits(x)+1)(bits(y)+1)\),\(bits(x)\)为二进制位数。已知\(n, d\)是这样生成的:首先随机找两个二进制位数为\(30\)的质数\(p, q\),其中\(n=pq\),而\(d\)由\(1\)~\(\phi(m)-1\)随机选取,且与\(m\)互质。现给出\(n\),每次可向系统输出一个\(a\),系统返回所需的时间。最后确定\(d\)。

solution

待解决。

Problem I. Interactive Sort

题目描述:随机生成一个\(n\)排列,将奇数按顺序设为\(o\)数组,将偶数按顺序设为\(e\)数组。每次向系统输出一个数对\((x, y)\),系统返回\(o[x]\)与\(e[y]\)的大小关系,最后确定\(o, e\)数组。

solution

判断\(o[1]\)与\(e\)的所有数的大小关系,从而确定\(o[1]\),也同时将\(e\)分成小于\(o[1]\)和大于\(o[1]\)两部分,以此类推,会将\(e\)分成\(i+1\)份,在以后的判断中,只要从\(i+1\)份中每份选一个数与\(o[i]\)比较,即可将\(o[i]\)的大小范围缩小到两份,再与这两份中每一个数相比较即可。

时间复杂度:\(O(nlogn)\)

Problem J. Journey from Petersburg to Moscow

题目描述:有一个有边权的无向图,一条从\(1\)到\(n\)的路径的长度为路径中最长的\(k\)条边的和,如果路径中不足\(k\)条边,则为全部边的和。问\(1\)到\(n\)的最短距离。

solution

待解决。

Problem K. Knapsack Cryptosystem

题目描述:有一个数列\(a_i\),且满足\(a_i>\sum_{j=1}^{i-1} a_j\),设\(q=2^{64}, r\)与\(q\)互质,且为一个正数。令\(b_i=(a_i \cdot r) mod q\)。现生成一个数\(num\),将\(num\)的二进制中为\(1\)的位\(i\)找出,令\(s=\sum b_i mod q\)。现给出\(s\),求\(num\)。

solution

假如\(n \leq \frac{2}{3}logq\),则可以将\(n\)分成两半,然后爆搜出两半分别能构成的和,再枚举其中一半的和,另一半能单调枚举。

假如\(n > \frac{2}{3}logq\), 因为\(a_i>\sum_{j=1}^{i-1} a_j\),所以\(a_1 < \frac{q}{2^n}=t\),所以可以枚举\(a_1\),又因\(r\)为奇数,\(q=2^{64}\),所以\(a_i\)与\(b_i\)最低位\(0\)的个数相同,设个数为\(z\),所以只需要枚举\(\frac{t}{2^z}\)。

其次可以根据\(a_1\)与\(b_1\),算出\(r\),但\(r\)的最高\(z\)位是不确定(因为被模了),所以可以枚举最高位\(2^z\)。然后逐一算出\(a_i\),看\(a_i\)是不是指数增长,若是,则找到了对的\(r\),然后从大到小贪心分解\(s\),得到答案。

时间复杂度:\(O(\sqrt[3]{q})\)

Problem L. Laminar Family

题目描述:给出一棵树,用很多数对\((x, y)\)的路径覆盖树,如果路径有相交部分(包括点相交,但不算互相包含),则输出\(No\),否则输出\(Yes\)。

solution

树链剖分。将数对按路径长度从长到短排序,然后对每个数对随机生成一个数值\(key\),将路径上的每个点都异或这个值,判断时只要判断路径上每个点的值是否都相同。

时间复杂度:\(O(nlogn)\)

2017 NEERC的更多相关文章

  1. ACM ICPC 2016–2017, NEERC, Northern Subregional Contest Problem J. Java2016

    题目来源:http://codeforces.com/group/aUVPeyEnI2/contest/229510 时间限制:2s 空间限制:256MB 题目大意: 给定一个数字c 用 " ...

  2. ural 2017 Best of a bad lot

    2017. Best of a bad lot Time limit: 1.0 secondMemory limit: 64 MB A cruise liner hasn’t moved away f ...

  3. 2017 ACM-ICPC EC-Final 记录

    北京赛区结束后就以为自己的赛季结束了……但是还是保持着做题量 那天突然接到通知,去打EC-Final 但是这是一个临时组起来的队伍,另外两位队友原来一起组的比较熟,我就需要适应一下. 于是我们临时训练 ...

  4. CI Weekly #10 | 2017 DevOps 趋势预测

    2016 年的最后几个工作日,我们对 flow.ci Android & iOS 项目做了一些优化与修复: iOS 镜像 cocoapods 版本更新: fir iOS上传插件时间问题修复: ...

  5. 猖獗的假新闻:2017年1月1日起iOS的APP必须使用HTTPS

    一.假新闻如此猖獗 刚才一位老同事 打电话问:我们公司还是用的HTTP,马上就到2017年了,提交AppStore会被拒绝,怎么办? 公司里已经有很多人问过这个问题,回答一下: HTTP还是可以正常提 ...

  6. iOS的ATS配置 - 2017年前ATS规定的适配

    苹果规定 从2017年1月1日起,新提交的 app 不允许使用NSAllowsArbitraryLoads来绕过ATS(全称:App Transport Security)的限制. 以前为了能兼容ht ...

  7. 深入研究Visual studio 2017 RC新特性

    在[Xamarin+Prism开发详解三:Visual studio 2017 RC初体验]中分享了Visual studio 2017RC的大致情况,同时也发现大家对新的Visual Studio很 ...

  8. Xamarin+Prism开发详解三:Visual studio 2017 RC初体验

    Visual studio 2017 RC出来一段时间了,最近有时间就想安装试试,随带分享一下安装使用体验. 1,卸载visual studio 2015 虽然可以同时安装visual studio ...

  9. Microsoft Visual Studio 2017 for Mac Preview 下载+安装+案例Demo

    目录: 0. 前言 1. 在线安装器 2. 安装VS 3. HelloWorld 4. ASP.NET MVC 5. 软件下载 6. 结尾 0. 前言: 工作原因,上下班背着我的雷神,一个月瘦了10斤 ...

随机推荐

  1. CF487E-Tourists

    题意 给出一个\(n\)个点\(m\)条边的无向图,给出每个点的初始点权,\(q\)次操作: 修改一个点的点权 询问两点间的所有路径中最小点权最小的路径上的最小点权 \(n,m,q\le 10^5,w ...

  2. CF464C-Substitutes in Number

    题意 开始给出一个长为\(n\)的数字串,有\(m\)次操作按顺序执行,每次把当前数字串中的某一个数码替换成一个数字串\(t\)(可以为空或多位),最后问操作结束后的数字串十进制下模\(10^9+7\ ...

  3. QT创建模态对话框阻塞整个应用程序和非模态对话框唯一性约束的简单示例

    QT创建模态对话框阻塞整个应用程序和非模态对话框唯一性约束的简单示例 部分代码: // 创建模态对话框阻塞整个应用程序和非模态对话框唯一性约束 QMenu *pDialog = mBar->ad ...

  4. 【刷题】BZOJ 1195 [HNOI2006]最短母串

    Description 给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T的子串. Input 第一行是一个正整数n(n<=12) ...

  5. BZOJ2743:[HEOI2012]采花——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2743 萧薰儿是古国的公主,平时的一大爱好是采花. 今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建 ...

  6. C++操作Windows WIFI

    原文链接地址:https://blog.csdn.net/just_do_1122/article/details/78031024 实现功能     无线网卡列表     无线热点扫面     无线 ...

  7. 小Q与内存

    Portal --> broken qwq Description (这个描述好像怎么都精简不起来啊qwq) 大概是说你的计算机有1GB的物理内存,按照Byte寻址,其物理地址空间为\(0\si ...

  8. 【BZOJ 1129】[POI2008]Per 二叉堆

    这个东西读完题之后,就能知道我们要逐位计算贡献.推一下式子,会发现,这一位的贡献,是当前剩余的数字形成的序列的总数,乘上所剩数字中小于s上这一位的数的个数与所剩数字的总数的比.所以我们维护“当前剩余的 ...

  9. 解决电脑各种 dll 文件丢失问题

    https://jingyan.baidu.com/article/ae97a646f9dbfdbbfc461d6d.html 下载鲁大师,点右上角的 游戏库,然后再点右上角的  修复  ,一键修复即 ...

  10. SpringMVC 重定向

    在返回视图名字的字符串前面加forword:或redirect:前缀是就会对他们做特殊处理,它们分别是转发和重定向 我们测试一个重定向操作把 Java代码 @RequestMapping(" ...