LOJ6053 简单的函数
题目传送门
分析:
对于这道题来说,当\(x\)为质数时:
\(~~~~f(x)=x-1+2[x=2]\)
因为除2以外的质数都是奇数,它们与1异或就是减一,然后2就是加一
然后我们先来康康怎么快速求一个子问题:
\(~~~~F(n)=\sum_{i=1}^{n}f(i)[i\in Prime]\)
然后就要学学一个叫min25筛的奇妙的东西
对于一个函数f(x):
1、\(f(x)\)可以用多项式表达。。。(一般都可以吧2333)
2、\(f(x^k)\)可以快速算出(这里的快速是指可以预处理之类的可以很快求出的东西,因为min25筛的复杂度会乘上求\(f(x^k)\)时的复杂度,所以这里的快速算出自己算复杂度拿捏一下就好了)
首先先引入一个函数\(G_{k}(n,m)\)
\(G_{k}(n,m)=\sum_{i=1}^{n}i^k[i\in Prime~||~minP_{i}>P_{m}]\)
其中\(minP_{i}\)代表 \(i\) 的最小质因子,\(P_{m}\)代表第\(m\)个质数
那么在当\(n>1\)时我们的子问题就可以转化:
\(~~~~\sum_{i=1}^{n}f(i)[i\in Prime]\)
\(=\sum_{i=1}^{n}(i-1)[i\in Prime]+2\)
\(=\sum_{i=1}^{n}i^1[i\in Prime]-\sum_{i=1}^{n}i^0[i\in Prime]+2\)
\(=G_{1}(n,|P|)-G_{0}(n,|P|)+2\)
其中\(|P|\)为\(n\)以内的质数个数
奥妙重重
于是乎我们开始思考如何推导\(G_{k}\)
考虑从\(G_{k}(n,m-1)\)推出\(G_{k}(n,m)\)相当于去除最小质因子为\(P_{m}\)的 \(i\) 的\(f(i)\)
容斥一发:
\(~~~G_{k}(n,m)=G_{k}(n,m-1)-P_{m}^k(G_{k}(\lfloor\frac{n}{P_m}\rfloor,m-1)+G_k(P_m-1,m-1))\)
然后\(G_k(n,0)=\sum_{i=1}^{n}i^k\),当\(k\)较小的时候是可以快速求的
递推过程中我们只需要考虑\(\sqrt n\)种取值
然后从前往后枚举质因数较大的取值不会影响小的取值,所以反向更新
复杂度\(O(N/ln\sqrt N)\)
很卡,所以考虑优化
当\(P_m^2>n\)时,\(G_k(n,m)=G_k(n,m-1)\)
剪枝之后的复杂度是\(O(N^\frac{3}{4})\)(不会证dbq),实际上好像会快很多2333
然后我们知道了\(F(n)\)
尝试求一下前缀和\(S(n,m)\)
\(~~~~S(n,m)=\sum_{i=1}^{n}F(i)[minP_i\ge P_m]\)
\(=F(n)-F(P_m-1)+\sum_{i=m}^{|P|}\sum_{j=1}^{P_i^{j-1}~\le N}(f(P_i^j)\cdot S(\lfloor\frac{N}{P_i^j}\rfloor,i+1)+f(P_i^{j+1}))\)
由于\(P_m\le \sqrt N\),这些值的\(F\)值之前筛的时候都是算出来了的(奥妙重重)
那么答案其实就是\(S(N,1)+f(1)\)
\(F(n)\)预处理一下
然后\(S(n,1)\)直接搜
OrzOrz
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<iostream>
#include<map>
#include<string>
#define maxn 500005
#define INF 0x3f3f3f3f
#define MOD 1000000007
#define inv2 500000004
using namespace std;
inline long long getint()
{
long long num=0,flag=1;char c;
while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
while(c>='0'&&c<='9')num=num*10+c-48,c=getchar();
return num*flag;
}
long long N,S;
long long pri[maxn],np[maxn],cnt,sumpri[maxn];
long long G0[maxn],G1[maxn];
long long num[maxn],tot;
long long pos1[maxn],pos2[maxn];
inline void init()
{
for(int i=2;i<maxn;i++)
{
if(!np[i])pri[++cnt]=i,sumpri[cnt]=(sumpri[cnt-1]+i)%MOD;
for(int j=1;j<=cnt&&i*pri[j]<maxn;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0)break;
}
}
}
inline long long getsum(long long n,long long m)
{
if(n<2||pri[m]>n)return 0;
long long k=(n<=S)?pos1[n]:pos2[N/n],ret=(G1[k]-sumpri[m-1]-G0[k]+m-1)%MOD;
ret+=(m==1)<<1;
for(int i=m;i<=cnt&&pri[i]*pri[i]<=n;i++)
{
long long tmp=pri[i];
for(int j=1;tmp*pri[i]<=n;j++,tmp*=pri[i])
ret=(ret+(getsum(n/tmp,i+1)*(pri[i]^j)%MOD)+(pri[i]^(j+1))%MOD)%MOD;
}
return ret;
}
int main()
{
init();
N=getint();
S=sqrt(N);
for(long long i=1,j;i<=N;i=j+1)
{
j=N/(N/i);num[++tot]=N/i;
G0[tot]=(num[tot]-1)%MOD;
G1[tot]=(num[tot]%MOD)*((num[tot]+1)%MOD)%MOD*inv2%MOD;
G1[tot]--;
if(num[tot]<=S)pos1[num[tot]]=tot;
else pos2[j]=tot;
}
for(int j=1;j<=cnt;j++)
for(int i=1;i<=tot&&pri[j]*pri[j]<=num[i];i++)
{
int k=(num[i]/pri[j]<=S)?pos1[num[i]/pri[j]]:pos2[N/(num[i]/pri[j])];
(G0[i]+=MOD-(G0[k]-(j-1))%MOD)%=MOD;
(G1[i]+=MOD-pri[j]*(G1[k]-sumpri[j-1])%MOD)%=MOD;
}
printf("%lld\n",(getsum(N,1)+1+MOD)%MOD);
}
LOJ6053 简单的函数的更多相关文章
- LOJ6053 简单的函数 【Min_25筛】【埃拉托斯特尼筛】
先定义几个符号: []:若方括号内为一个值,则向下取整,否则为布尔判断 集合P:素数集合. 题目分析: 题目是一个积性函数.做法之一是洲阁筛,也可以采用Min_25筛. 对于一个可以进行Min_25筛 ...
- LOJ6053 简单的函数(min_25筛)
题目链接:LOJ 题目大意:从前有个积性函数 $f$ 满足 $f(1)=1,f(p^k)=p\oplus k$.(异或)求其前 $n$ 项的和对 $10^9+7$ 取模的值. $1\le n\le 1 ...
- [LOJ6053]简单的函数:Min_25筛
分析 因为题目中所给函数\(f(x)\)的前缀和无法较快得出,考虑打表以下两个函数: \[ g(x)=x \times [x是质数] \] \[ h(x)=1 \times [x是质数] \] 这两个 ...
- Case when 的用法,简单Case函数
Case when 的用法,简单Case函数 简单CASE表达式,使用表达式确定返回值. 语法: CASE search_expression WHEN expression1 THEN result ...
- python之简单的函数介绍(http://docs.python.org/3/library)
Python不但能非常灵活地定义函数,而且本身内置了很多有用的函数,可以直接调用. 在上面的网站上我们可以进行查询,Python具体都有哪些函数. 我们也可以再交互命令行中来查找函数: >> ...
- php简单表格函数
php简单表格函数 代码 <?php //ctrl+shift+j /** * @param unknown $rows * @param unknown $cols * @param stri ...
- python简单的函数定义和用法实例
python简单的函数定义和用法实例 这篇文章主要介绍了python简单的函数定义和用法,实例分析了Python自定义函数及其使用方法,具有一定参考借鉴价值,需要的朋友可以参考下 具体分析如下: 这里 ...
- python简单的函数应用
一个简单的函数应用,包括自定义函数,lambda函数,列表解析. 1 #!usr/bin/env python3 2 # -*- coding:utf-8 -*- 3 4 #开始定义函数 5 def ...
- 【LOJ6053】简单的函数(min_25筛)
题面 LOJ 题解 戳这里 #include<iostream> #include<cstdio> #include<cstdlib> #include<cs ...
随机推荐
- Canal常用配置
Canal 是mysql数据库binlog的增量订阅&消费组件. 基于日志增量订阅&消费支持的业务: 数据库镜像 数据库实时备份 多级索引 (卖家和买家各自分库索引) search b ...
- CAS5.3 单点登录/登出/springboot/springmvc
环境: jdk:1.8 cas server:5.3.14 + tomcat 8.5 cas client:3.5.1 客户端1:springmvc 传统web项目(使用web.xml) 客户端2:s ...
- 空气质量管理系统ssm(mybatis+spring+springMVC)框架+前后端分离
1.目录结构: 2.需要注意的地方 2.1在WEB-INFO下新建 2.1.1 springMVC-servlet.xml <?xml version="1.0" encod ...
- CUBA 框架2019年回顾
对于 CUBA 框架,2019年最重要的事件应该是 CUBA 7 的发布, 这是 CUBA 框架的一次巨大进化,CUBA 7 引入了一系列全新的 UI 和更灵活的数据访问机制,并且发布了基于 Inte ...
- 【萌新向】cartographer_ros最新安装指南 2019-12
首先说明,这篇文章于2019年12月写下,cartographer现在还在不断更新,也许这篇文档内容会失效,但是大体是一样的安装流程. 一.硬件条件 使用平台 x86_64平台 ROS发行版 Indi ...
- DEVOPS技术实践_23:判断文件下载成功作为执行条件
在实际生产中,我们经常会需要通过判断一个结果作为一个条件去执行另一个内容,比如判断一个文件是否存在,判官一个命令是否执行成功等等 现在我们选择其中一个场景进行实验,当某个目录下存在,则执行操作 1. ...
- Docker Swarm Mode简介与核心概念
什么是Docker Swarm Docker Swarm是Docker官方的一种容器编排方案,用于管理跨主机的Docker容器,可以快速对指定服务进行水平扩展.部署.删除 一个Docker Swarm ...
- 有关call和apply、bind的区别及this指向问题
call和apply都是解决this指向问题的方法,唯一的区别是apply传入的参数除了其指定的this对象之外的参数是一个数组,数组中的值会作为参数按照顺序传入到this指定的对象中. bind是解 ...
- 跟我一起学QT_QT标准对话框_颜色选择框
标准对话框 QT的标准对话框分为以下几种 颜色对话框 文件对话框 字体对话框 输入对话框 消息对话框 进度对话框 错误信息对话框 向导对话框 颜色对话框 首先学习的是颜色对话框颜色对话框类QColor ...
- $CF311B\ Cats\ Transport$ 斜率优化
AcWing Description Sol 设f[i][j]表示前i个饲养员接走前j只猫咪的最小等待时间. 要接到j猫咪,饲养员的最早出发时间是可求的,设为d: $ d[j]=Tj-\sum_{k= ...