听说,一个好的Oier都是题目喂出来的。

题目

定义一个序列的最长贪心严格上升子序列为:若选出的子序列为 \(a\),对于其中相邻两项 \(i,j\),不存在 b\(i<k<j\),满足在原序列 \(b\) 中,有 \(b_i<b_k\),换句话说就是选择一个元素后必须选择它之后第一个大于它的元素

给定一个长度为 \(n\) 的序列,同时给定一个常数 \(k\),求该序列的所有长度为 \(k\)的子区间的最长贪心严格上升子序列的长度

数据范围\(10^6\)

解题思路

先想了一个长链剖分的假做法,发现不会处理长儿子,自闭了。

考虑每个点的出度都不超过1,所以他构成了一颗森林

设\(f_x\)表示从x开始往上走,最长走多远。

每加入一个点,需要把它的子树内的所有点权值+1

每删除一个点,需要把它的权值变得足够小

线段树维护即可

代码

#include<bits/stdc++.h>
#define now edge[i].v
#define go(x) for(int i=head[x];i;i=edge[i].nxt)
#define ls o<<1,l,mid
#define rs o<<1|1,mid+1,r
using namespace std;
const int sz=1e6+527;
int n,k;
int cnt,T;
int x,y,z;
int head[sz];
int a[sz],ans[sz];
int dfn[sz],lev[sz];
stack<int>s;
struct Edge{
int v,nxt;
}edge[sz];
struct node{
int tag,mx;
}tr[sz<<2];
void add(int u,int v){
edge[++cnt]=(Edge){v,head[u]};
head[u]=cnt;
}
void update(int o){
tr[o<<1].tag+=tr[o].tag;
tr[o<<1|1].tag+=tr[o].tag;
tr[o<<1].mx+=tr[o].tag;
tr[o<<1|1].mx+=tr[o].tag;
tr[o].tag=0;
}
void modify(int o,int l,int r){
if(x<=l&&r<=y) return (void)(tr[o].mx+=z,tr[o].tag+=z);
if(tr[o].tag) update(o);
int mid=(l+r)>>1;
if(x<=mid) modify(ls);
if(y>mid) modify(rs);
tr[o].mx=max(tr[o<<1].mx,tr[o<<1|1].mx);
}
void dfs(int x){
dfn[x]=++T;
go(x)
dfs(now);
lev[x]=T;
}
int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
while(!s.empty()&&a[s.top()]<a[i]){
add(i,s.top());
s.pop();
}
s.push(i);
}
n++;
while(!s.empty()){
add(n,s.top());
s.pop();
}
dfs(n);
for(int i=1;i<=k;i++){
x=dfn[i],y=lev[i],z=1;
modify(1,1,n);
}
ans[1]=tr[1].mx;
for(int i=k+1;i<n;i++){
x=dfn[i],y=lev[i],z=1;
modify(1,1,n);
x=dfn[i-k],y=lev[i-k],z=-1;
modify(1,1,n);
ans[i-k+1]=tr[1].mx;
}
for(int i=1;i<=n-k;i++) printf("%d ",ans[i]);
}

题目链接

CF1132G的更多相关文章

  1. [CF1132G]Greedy Subsequences

    [CF1132G]Greedy Subsequences 题目大意: 定义一个序列的最长贪心严格上升子序列为:任意选择第一个元素后,每次选择右侧第一个大于它的元素,直到不能选为止. 给定一个长度为\( ...

  2. 【CF1132G】Greedy Subsequences(线段树)

    [CF1132G]Greedy Subsequences(线段树) 题面 CF 题解 首先发现选完一个数之后选择下一个数一定是确定的. 对于每个数预处理出左侧第一个比他大的数\(L\),那么这个数加入 ...

  3. cf1132G. Greedy Subsequences(线段树)

    题意 题目链接 Sol 昨天没想到真是有点可惜了. 我们考虑每个点作为最大值的贡献,首先预处理出每个位置\(i\)左边第一个比他大的数\(l\),显然\([l + 1, i]\)内的数的后继要么是\( ...

  4. cf1132G 线段树解分区间LIS(一种全新的线段树解LIS思路)+单调栈

    /* 给定n个数的数列,要求枚举长为k的区间,求出每个区间的最长上升子序列长度 首先考虑给定n个数的数列的LIS求法:从左往右枚举第i点作为最大点的贡献, 那么往左找到第一个比a[i]大的数,设这个数 ...

随机推荐

  1. svn使用方法以及使用教程

    一.什么是svnSVN是Subversion的简称,是一个开放源代码的版本控制系统,相较于RCS.CVS,它采用了分支管理系统,它的设计目标就是取代CVS. 二.svn的下载安装下载地址:https: ...

  2. MyEclipse使用总结——将原有的MyEclipse中的项目转成maven项目[转]

    前面一篇文章中我们了解了 在myeclipse中新建Maven框架的web项目 那么如果我们原来有一些项目现在想转成maven项目应该怎么做呢 我收集到了三种思路: 一.新建一个maven项目,把原项 ...

  3. PAT甲级——A1079 Total Sales of Supply Chain

    A supply chain is a network of retailers(零售商), distributors(经销商), and suppliers(供应商)-- everyone invo ...

  4. Cooki and Session

    目录 Cookie Cookie的由来 什么是Cookie Cookie的原理 查看Cookie Django中操作Cookie 获取Cookie 设置Cookie 删除Cookie Session ...

  5. 09_springmvc异常处理

    一.异常处理思路 系统中异常包括两类:预期异常和运行时异常RuntimeException,前者通过捕获异常从而获取异常信息,后者主要通过规范代码开发.测试通过手段减少运行时异常的发生. 系统的dao ...

  6. STL与泛型编程-学习2-GeekBand

    9, 容器 Deque 双向队列 和vector类似, 新增加: push_front 在头部插入一个元素 pop_front 在头部弹出一个元素 Deque和vector内存管理不同: 大块分配内存 ...

  7. C++面向对象高级编程(下)-Geekband

    11, 组合和继承 一, Composition 复合  has-a的关系 简单来讲, 就是: class A{     classB b1;   }; 这里讲到Adapter设计模式: templa ...

  8. 方法的重写(override)两同两小一大原则:

    方法名相同,参数类型相同 子类返回类型小于等于父类方法返回类型, 子类抛出异常小于等于父类方法抛出异常, 子类访问权限大于等于父类方法访问权限.

  9. 官方 NSIS 插件全集简单介绍

    Math plugin (contain examples) -- 数学函数插件,NSIS 软件已包含,这个不用说了吧,计算的时候必用. System plugin (contain examples ...

  10. 转:linux驱动开发的经典书籍

    源地址:http://www.cnblogs.com/xmphoenix/archive/2012/03/27/2420044.html Linux驱动学习的最大困惑在于书籍的缺乏,市面上最常见的书为 ...