CF1208G Polygons 数论
题目链接:https://codeforces.com/contest/1208/problem/G
题意:给定两个正整数\(n\)和\(k\),询问在一个圆上你最少需要几个点,才能在这些点上构造出\(k\)个边数小于等于\(n\)的正多边形。
分析:我们假设我们选取了一个正\(m\)边形,那么边数为\(m\)的因子的所有正多边形也就全部满足了。因此如果我们选了正\(m\)边形,我们相当于已经选择了所有正\(p\)边形(\(p | k\))(比如说我们想要选正六边形,那么必须先选择正三角形),增加的点数即为\(\varphi (m)\)。因此我们只需要对欧拉函数排序,并将前\(k\)个累加即可。
upd:官方答案的证明方法可能更好。我们在选正多边形时,可以使每一个正多边形的第一个点重合。那么正\(m\)边形的每一个点在圆上的位置就可以表示为\(0, \frac{1}{m} , \frac{2}{m} , ... , \frac{m-1}{m}\)。因此在选择了\(k\)个正多边形后,最简真分数的总数即为我们要求的答案。于是只需要将我们选择的\(k\)个正多边形的欧拉函数累加即为答案,因为欧拉函数就是互质数数量,也就是新增加的点数。
AC代码:
#include <bits/stdc++.h>
#define rep(i, a, b) for(long long i = a; i <= b; ++i)
using namespace std;
void io() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
}
long long ans = 2;
const int maxn = 1000000;
bool vis[maxn + 5];
int prime[maxn + 5], phi[maxn + 5], n, k, cnt;
void Phi() {
phi[1] = 1; vis[1] = true;
for (int i = 2; i <= maxn; i++) {
if (!vis[i]) prime[cnt++] = i, phi[i] = i - 1;
for (int j = 0; j < cnt&&prime[j] * i <= maxn; j++) {
vis[prime[j] * i] = 1;
if (i%prime[j] == 0) {
phi[i*prime[j]] = phi[i] * prime[j];
break;
}
phi[i*prime[j]] = phi[i] * (prime[j] - 1);
}
}
}
vector<int> v;
int main() {
io(); cin >> n >> k;
if (k == 1) { cout << 3; return 0; }
Phi();
rep(i, 3, n) v.emplace_back(phi[i]);
sort(v.begin(), v.end());
rep(i, 0, k - 1) ans += v[i];
cout << ans;
}
CF1208G Polygons 数论的更多相关文章
- Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2) G. Polygons 数论
G. Polygons Description You are given two integers
- cf1208G Polygons 欧拉函数
链接 cf 给你两个正整数\(n\)和\(k\),询问在一个圆上你最少需要几个点构才能造出\(k\)个边数小于等于\(n\)的正多边形 思路 深受迫害,所以写的详细一点,不会请留言. 性质1 考虑加进 ...
- 「CF1208G」 Polygons
「CF1208G」 Polygons 似乎我校神犇在很久以前和我提过这题? 首先有一点显而易见:这 \(k\) 个多边形肯定至少有一个公共的顶点.假设我们将此点定义为起点. 那么对于一个正 \(n\) ...
- Codeforces Round #382 Div. 2【数论】
C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...
- NOIP2014 uoj20解方程 数论(同余)
又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...
- 数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)
~>>_<<~ 咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!! Begin ! ~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不 ...
- hdu 1299 Diophantus of Alexandria (数论)
Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
- 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)
4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 290 Solved: 148[Submit][Status ...
- bzoj2219: 数论之神
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
随机推荐
- Docker+JMeter单机版+MinIO
基于JMeter5.1.1+MinIO JMeter发起压测 MinIO作为文件服务器 一.目录结构: Dockerfile文件: FROM ubuntu:18.04# 基础镜像 MAINTAINE ...
- 巨杉学习笔记 | SequoiaDB MySQL导入导出工具使用实战
本文来自社区用户投稿,感谢这位小伙伴的技术分享 巨杉数据库架构简介 巨杉数据库作为分布式数据库是计算和存储分离架构,由数据库实例层和存储引擎层组成的.存储引擎层负责数据库核心功能比如数据读写存储以及分 ...
- HTML的表单初级验证
HTML的表单初级验证 placeholder(提示信息) required(确保不能为空) pattern(正则表达式验证) 1. placeholder(提示信息) 语法: <p>账号 ...
- CodeForces 1144D
原题https://vjudge.net/problem/CodeForces-1144D /*求序列就经过几次step变成同一个数, 其实能发现一个数经过step1或者step2变成相邻的数, 所以 ...
- 题解【洛谷P5658】[CSP-S 2019]括号树
题面 一道简单的栈与\(\text{DP}\)的结合. 首先介绍一下序列上的括号匹配问题,也就是此题在序列上的做法: 设 \(dp_i\) 表示以 \(i\) 结尾的合法的括号序列个数, \(ss_i ...
- Linux监控工具nmon
Linux监控工具 nmon nmon是一种在Linux操作系统上广泛使用的监控与分析工具,nmon所记录的信息是比较全面的,它能在系统运行 过程中实时地捕捉系统资源的使用情况,并且能输出结果到文件中 ...
- js获取当前页面的url网址信息
设置或获取整个 URL 为字符串: window.location.href 获取内容:http://10.100.0.8:7000/SVP/ "window.location.href&q ...
- An easy problem(位运算)
As we known, data stored in the computers is in binary form.(数据以二进制形式存储于电脑之中.)The problem we discuss ...
- POJ2456 Aggressive cows(二分)
链接:http://poj.org/problem?id=2456 题意:一个数轴上n个点,每个点一个整数值,有c个奶牛,要放在这些点的某几个上,求怎么放可以使任意两个奶牛间距离的最小值最大,求这个最 ...
- Codeforces Round #570 (Div. 3) B. Equalize Prices
原文链接https://codeforces.com/contest/1183/problem/B 题意:进行Q组测试,在每组中有长度为n的数组a[i],然后现在给你一个K,问你找到一个bi使得|ai ...