题目链接:https://www.luogu.org/problem/P1310

本题涉及算法:栈、前缀表达式转后缀表达式,动态规划思想。

这道题目我思考了好长时间,第一时间让我做的话我也做不出来。

看洛谷上面的题解给了我很大的启发。

其中最重要的两点启发是:

启发1:中缀加操作数预处理

将原始表达式中添加上‘.’,这些‘.’对应运算数(这么预处理能方便我接下来更方便地将前缀转后缀表达式进行处理);

启发2:动归思想

首先一个状态对应两个值,我暂且将它们设为 \(v0\) 和 \(v1\) ,其中:

  • \(v0\) 表示该状态下结果为 \(0\) 的方案数;
  • \(v1\) 表示该状态下结果为 \(1\) 的方案数。

那么,在前缀转中缀的时候,只有我们假设由两个状态 \(a\) 和 \(b\) 变换到新的状态 \(c\),那么:

  • 如果进行的是 + 操作,则 \(c.v0 = a.v0 \times b.v0\) ,\(c.v1 = a.v0 \times b.v1 + a.v1 \times b.v0 + a.v1 \times b.v1\) ;
  • 如果进行的是 * 操作,则 \(c.v0 = a.v0 \times b.v0 + a.v0 \times b.v1 + a.v1 \times b.v0\) ,\(c.v1 = a.v1 \times b.v1\) 。

这里和原始的前缀转后缀的区别是:

  • 原始进栈的都是一个个单独的操作数;
  • 这里进行的都是一个个出事状态 \(p\) ,这些 \(p\) 满足 \(p.v0 = p.v1 = 1\)(即:单独一个数的时候结果为 \(0\) 或者为 \(1\) 的方案数都为 \(1\))。

实现代码如下:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 200200;
const int MOD = 10007;
char s[maxn], t[maxn];
int m, n;
pair<int, int> num_stk[maxn];
char flag_stk[maxn];
int num_top, flag_top;
int main() {
scanf("%d%s", &m, s);
if (s[0] == '+' || s[0] == '*') t[n++] = '.';
for (int i = 0; s[i]; i ++) {
t[n++] = s[i];
if ( (s[i] == '+' || s[i] == '*' || s[i] == '(') && (!s[i+1] || s[i+1] != '(') )
t[n++] = '.';
}
for (int i = 0; i < n; i ++) {
if (t[i] == '.') {
num_stk[++ num_top] = make_pair(1, 1);
while (flag_top > 0 && flag_stk[flag_top] == '*') {
flag_top --;
pair<int, int> p1 = num_stk[num_top --];
pair<int, int> p2 = num_stk[num_top --];
num_stk[++ num_top] = make_pair(
( p1.first * p2.first + p1.first * p2.second + p1.second * p2.first ) % MOD,
p1.second * p2.second % MOD
);
}
}
else if (t[i] == '+') {
while (flag_top > 0 && flag_stk[flag_top] == '*') {
flag_top --;
pair<int, int> p1 = num_stk[num_top --];
pair<int, int> p2 = num_stk[num_top --];
num_stk[++ num_top] = make_pair(
( p1.first * p2.first + p1.first * p2.second + p1.second * p2.first ) % MOD,
p1.second * p2.second % MOD
);
}
while (flag_top > 0 && flag_stk[flag_top] == '+') {
flag_top --;
pair<int, int> p1 = num_stk[num_top --];
pair<int, int> p2 = num_stk[num_top --];
num_stk[++ num_top] = make_pair(
p1.first * p2.first % MOD,
( p1.first * p2.second + p1.second * p2.first + p1.second * p2.second ) % MOD
);
}
flag_stk[++ flag_top] = '+';
}
else if (t[i] == '(' || t[i] == '*') {
flag_stk[++ flag_top] = t[i];
}
else if (t[i] == ')') {
while (flag_top > 0 && flag_stk[flag_top] != '(') {
if (flag_stk[flag_top] == '*') {
flag_top --;
pair<int, int> p1 = num_stk[num_top --];
pair<int, int> p2 = num_stk[num_top --];
num_stk[++ num_top] = make_pair(
( p1.first * p2.first + p1.first * p2.second + p1.second * p2.first ) % MOD,
p1.second * p2.second % MOD
);
}
else if (flag_stk[flag_top] == '+') {
flag_top --;
pair<int, int> p1 = num_stk[num_top --];
pair<int, int> p2 = num_stk[num_top --];
num_stk[++ num_top] = make_pair(
p1.first * p2.first % MOD,
( p1.first * p2.second + p1.second * p2.first + p1.second * p2.second ) % MOD
);
} }
flag_top --; // remove '('
}
}
while (flag_top > 0) {
if (flag_stk[flag_top] == '*') {
flag_top --;
pair<int, int> p1 = num_stk[num_top --];
pair<int, int> p2 = num_stk[num_top --];
num_stk[++ num_top] = make_pair(
( p1.first * p2.first + p1.first * p2.second + p1.second * p2.first ) % MOD,
p1.second * p2.second % MOD
);
}
else if (flag_stk[flag_top] == '+') {
flag_top --;
pair<int, int> p1 = num_stk[num_top --];
pair<int, int> p2 = num_stk[num_top --];
num_stk[++ num_top] = make_pair(
p1.first * p2.first % MOD,
( p1.first * p2.second + p1.second * p2.first + p1.second * p2.second ) % MOD
);
}
}
printf("%d\n", num_stk[1].first);
return 0;
}

这里虽然我过了代码,但是我觉得我对后缀表达式的理解还没有达到那种深度。所以后续还是需要进一步理解如果方便快捷地进行前缀到后缀表达式的转换。

作者:zifeiy

洛谷P1310 表达式的值 题解 栈/后缀表达式的应用的更多相关文章

  1. 洛谷P1981 表达式求值 题解 栈/中缀转后缀

    题目链接:https://www.luogu.org/problem/P1981 这道题目就是一道简化的中缀转后缀,因为这里比较简单,只有加号(+)和乘号(*),所以我们只需要开一个存放数值的栈就可以 ...

  2. 洛谷 P5146 最大差值 题解

    P5146 最大差值 题目描述 HKE最近热衷于研究序列,有一次他发现了一个有趣的问题: 对于一个序列\(A_1,A_2\cdots A_n\)​,找出两个数\(i,j\),\(1\leq i< ...

  3. 洛谷 P1351 联合权值 题解

    P1351 联合权值 题目描述 无向连通图 \(G\) 有 \(n\) 个点,\(n-1\) 条边.点从 \(1\) 到 \(n\) 依次编号,编号为 \(i\) 的点的权值为 \(W_i\)​,每条 ...

  4. 2019.06.17课件:[洛谷P1310]表达式的值 题解

    P1310 表达式的值 题目描述 给你一个带括号的布尔表达式,其中+表示或操作|,*表示与操作&,先算*再算+.但是待操作的数字(布尔值)不输入. 求能使最终整个式子的值为0的方案数. 题外话 ...

  5. 【洛谷P1310 表达式的值】

    题目链接 题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算.例如:计算表达式 ...

  6. 洛谷P4047 [JSOI2010]部落划分题解

    洛谷P4047 [JSOI2010]部落划分题解 题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落 ...

  7. [题解]P1449 后缀表达式(栈)

    题目链接:P1449 后缀表达式 题目描述: 所谓后缀表达式是指这样的一个表达式:式中不再引用括号,运算符号放在两个运算对象之后,所有计算按运算符号出现的顺序,严格地由左而右新进行(不用考虑运算符的优 ...

  8. 洛谷P1783 海滩防御 分析+题解代码

    洛谷P1783 海滩防御 分析+题解代码 题目描述: WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和 ...

  9. 中缀表达式转逆波兰式(后缀表达式)求值 C++ Stack

    给一个包含小数的中缀表达式 求出它的值 首先转换为后缀表达式然后利用stack求出值 转换规则: 如果字符为'('  push else if 字符为 ')' 出栈运算符直到遇到‘(' else if ...

随机推荐

  1. Codeforces 455C

    题目链接 C. Civilization time limit per test 1 second memory limit per test 256 megabytes input standard ...

  2. arcgis图层控制

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8&quo ...

  3. org.apache.jasper.JasperException: xxxx.jsp(118,24) Attribute style invalid for tag formatNumber according to TLD

    错误:org.apache.jasper.JasperException: /projm/projBudgetChangeOverview.jsp(118,24) Attribute style in ...

  4. Springboot项目下mybatis报错:Invalid bound statement (not found)

    mybatis报错:Invalid bound statement (not found)的原因很多,但是正如报错提示一样,找不到xml中的sql语句,报错的情况分为三种: 第一种:语法错误 Java ...

  5. 介绍Provide以及Inject

    介绍 Vue 的 Provide 以及 Inject Provide 以及 Inject 是 Vue 中用于祖先元素向其所有后台元素注入依赖的接口. 具体用法 // Data.vue ... expo ...

  6. <第一周> city中国城市聚类 testdata学生上网聚类 例子

    中国城市聚类 # -*- coding: utf-8 -*- kmeans算法 """ Created on Thu May 18 22:55:45 2017 @auth ...

  7. spring中 使用说明

    在xml配置了这个标签后,spring可以自动去扫描base-pack下面或者子包下面的java文件,如果扫描到有@Component @Controller@Service等这些注解的类,则把这些类 ...

  8. php怎么自动加载

    在 PHP 代码的顶部你是不是经常看到这样的代码. require 'lionis.php'; require 'is.php'; require 'cool.php'; 如果只是引入几个 PHP 脚 ...

  9. 如何在Liferay 7中用html显示页面

    liferay portlet默认的显示页面是view.jsp,虽然可以在jsp中用include标签包括html文件,但是如何直接通过修改配置文件让默认的显示页面为view.html呢? 1.用Li ...

  10. 阿里云SaaS生态战略发布,用宜搭5分钟部署OCR文字识别

    7月26日,在阿里云合作伙伴峰会上,阿里云发布SaaS生态战略:通过SaaS加速器为合作伙伴提供应用开发.集成.上云.售卖的全链路解决方案,提升开发效率和集成效率,缩短商业化周期. 作为阿里SaaS加 ...