A. Polo the Penguin and Segments

  • 模拟。

B. Polo the Penguin and Matrix

  • 每个数字模d余数必须一样。
  • 枚举结果,可计算操作次数,取最小。

C. Polo the Penguin and Strings

  • ababab……cdef……
  • 对于n、k分别为1时,需要特判。

D. Polo the Penguin and Houses

  • 前k个暴力枚举,后n-k个每个可取个数为n-k。

E. Polo the Penguin and XOR operation

  • 显然为了让结果尽量大,所以异或和应该和加法和接近。
  • 观察样例可知,结果为n(n+1),所以可猜测对于任意的n可构造出异或和n(n+1)的序列,即异或不存在两个1相消。
  • xjb证明:对于n来说,假设二进制最高位为p,则\(2^{p + 1} - 1 \oplus n\) 显然小于n;对于n-1来说(假设二进制最高位不变),\(2^{p+1}-1 \oplus n - 1\)会大于\(2^{p+1} - 1 \oplus n\)。也就是\([2^{p + 1}-1 \oplus n, n]\)构成一个我们要的区间,而\([1,2^{p + 1}-1 \oplus n)\)则变成一个子问题。

D. Polo the Penguin and Trees

  • 考虑每个点的贡献,把一个点挖掉后会形成若干棵子树,对于每个子树内的路径与经过当前点的路径必然不相交。

E. Polo the Penguin and Lucky Numbers

  • 因为\(l,r\)没有前导0,即最后的幸运数字长度均为\(|l|,|r|\)。
  • 将问题看成求\([1,n]\)内\(a_1a_2+a_2a_3+…+a_{n-1}a_n\)的值。
  • 长度为1时,幸运数字有4,7;
  • 长度为2时,幸运数字有44,47,74,77;
  • 记长度为\(l\)时,幸运数字有\(a_{1}^{l},a_{2}^{l},…,a_{n}^{l}\),那么长度为\(l+1\)时,新的幸运数字为\(\overline{a_{1}^{l}4},\overline{a_{1}^{l}7},\overline{a_{2}^{l}4},\overline{a_{2}^{l}7}…,\overline{a_{n}^{l}4},\overline{a_{n}^{l}7}\)。此时是不考虑有上界的情况,有上界的情况时,最大值是前缀,且添加4、7时要根据下一位的值考虑,下一位是4时,最大值只能加4得到新的幸运数字,下一位是7时则相当于没有限制。
  • 假设\(F_i=\sum_{i=1}^{K_i-1}{a_ia_{i+1}}\),\(K_i\)表示幸运数字的个数。
  • 当\(时s_{i+1}=4时\)\[F_{i+1}=\sum_{i=1}^{K_{i+1}-1}{A_iA_{i+1}}\\=\sum_{i=1}^{K_i-1}{\overline{a_i4}\cdot\overline{a_i7}}+\sum_{i=1}^{K_i-1}{\overline{a_i7}\cdot\overline{a_{i+1}4}}\\=\sum_{i=1}^{K_i-1}{(100a_i^2+110a_i+28)}+\sum_{i=1}^{K_i-1}{(100a_ia_{i+1}+40a_i+70a_{i+1}+28)}\\=100\sum_{i=1}^{K_i-1}{a_ia_{i+1}}+100\sum_{i=1}^{K_i-1}{a_i^2}+220\sum_{i=1}^{K_i-1}{a_i}+70(a_{K_i}-a_1)+56(K_i-1)\]
  • 当\(s_{i+1}=7\)时,只需要加上\(\overline{a_{K_i}7}\)这项即可。
  • 为了得到\(F_i\),需要维护和、平方和,两个值推导与上面的类似。

Codeforces Round #177 (Div. 1 + Div. 2)的更多相关文章

  1. Codeforces Round #177 (Div. 1) 题解【ABCD】

    Codeforces Round #177 (Div. 1) A. Polo the Penguin and Strings 题意 让你构造一个长度为n的串,且里面恰好包含k个不同字符,让你构造的字符 ...

  2. Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...

  3. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

  4. Educational Codeforces Round 43 (Rated for Div. 2)

    Educational Codeforces Round 43 (Rated for Div. 2) https://codeforces.com/contest/976 A #include< ...

  5. Educational Codeforces Round 35 (Rated for Div. 2)

    Educational Codeforces Round 35 (Rated for Div. 2) https://codeforces.com/contest/911 A 模拟 #include& ...

  6. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...

  7. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...

  8. Educational Codeforces Round 63 (Rated for Div. 2) 题解

    Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...

  9. Educational Codeforces Round 39 (Rated for Div. 2) G

    Educational Codeforces Round 39 (Rated for Div. 2) G 题意: 给一个序列\(a_i(1 <= a_i <= 10^{9}),2 < ...

  10. Educational Codeforces Round 48 (Rated for Div. 2) CD题解

    Educational Codeforces Round 48 (Rated for Div. 2) C. Vasya And The Mushrooms 题目链接:https://codeforce ...

随机推荐

  1. C# Socket流数据大小端读写封装

      网络数据是大端模式,而c#中的数据小端结构,那么在读写网络数据的时候需要进行转换.c#类库IPAddress已经封装了大小端的转换. 封装代码如下: using System.IO; using  ...

  2. 请自行检查是否安装VC9运行库??

    phpStudy是一款PHP调试环境的程序集成包,该程序包集成最新的Apache+PHP+MySQL+phpMyAdmin+ZendOptimizer,一次性安装,无须配置即可使用,是非常方便.好用的 ...

  3. Linux操作系统各版本ISO镜像下载(包括oracle linux\redhat\centos\u

    Linux操作系统各版本ISO镜像下载(包括oracle linux\redhat\centos\ubuntu\debian等) 1.Oracle Linux(下载地址) (1)OracleLinux ...

  4. UML时序图(Sequence Diagram)学习笔记

    什么是时序图时序图(Sequence Diagram),又名序列图.循序图,是一种UML交互图.它通过描述对象之间发送消息的时间顺序显示多个对象之间的动态协作. 让我们来看一看visio2016对时序 ...

  5. 微服务Eureka使用详解

    Eureka是spring cloud中的一个负责服务注册与发现的组件.遵循着CAP理论中的A(可用性)P(分区容错性). 一个Eureka中分为eureka server和eureka client ...

  6. C++之正则表示,字符串是否为全字母或者全数字

    bool isLetter(std::string& inputtext){ tr1::regex reg("^[A-Za-z]+$"); bool bValid = tr ...

  7. onethink二级导航调用

    <ul class="nav-main">//添加tree参数 <think:nav name="nav" tree="true&q ...

  8. Sublime Text3 安装less

    1.安装Sublime 插件 (1)安装LESS插件:因为Sublime不支持Less语法高亮,所以,先安装这个插件,方法: ctrl+shift+p>install Package>输入 ...

  9. ubuntu更新问题

    ubuntu 下出现E: Sub-process /usr/bin/dpkg returned an error code 在用apt-get安装软件时出现了类似于install-info: No d ...

  10. JavaScript学习之setTimeout

    <JavaScript权威指南>第四版中说“window对象方法setTimeout()用来安排一个JavaScript的代码段在将来的某个指定时间运行”. setTimeout(foo, ...