POJ 1273 Drainage Ditches 网络流 FF
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 74480 | Accepted: 28953 |
Description
drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water
flows into that ditch.
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.
Input
the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which
this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.
Output
Sample Input
5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10
Sample Output
50
代码:
#include<iostream>
#include<string>
#include<algorithm>
#include<map>
#include<vector>
#include<queue>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=1005;
const int INF=0x3f3f3f3f;
int capacity[maxn][maxn],flow[maxn][maxn];
int v;
int networkflow(int source, int sink) {
int totalflow=0;
memset(flow,0,sizeof(flow));
while(true) {
vector<int> parent(maxn,-1);
queue<int> q;
parent[source]=source;
q.push(source);
while(!q.empty()) {
int here=q.front();q.pop();
for(int there=0;there<v;++there) {
if(capacity[here][there]-flow[here][there]>0&&parent[there]==-1) {
parent[there]=here;
q.push(there);
}
}
}
if(parent[sink]==-1) break;
int amount=INF;
for(int p=sink;p!=source;p=parent[p]) {
amount=min(amount,capacity[parent[p]][p]-flow[parent[p]][p]);
}
for(int p=sink;p!=source;p=parent[p]) {
flow[parent[p]][p]+=amount;
flow[p][parent[p]]-=amount;
}
totalflow+=amount;
}
return totalflow;
}
int main() {
int m,n;
while(~scanf("%d%d",&m,&n)) {
v=n;
memset(capacity,0,sizeof(capacity));
for(int i=0;i<m;++i) {
int x,y,c;
scanf("%d%d%d",&x,&y,&c);
capacity[x-1][y-1]+=c;
}
printf("%d\n",networkflow(0,n-1));
}
return 0;
}
POJ 1273 Drainage Ditches 网络流 FF的更多相关文章
- POJ 1273 Drainage Ditches (网络流Dinic模板)
Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover ...
- poj 1273 Drainage Ditches 网络流最大流基础
Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 59176 Accepted: 2272 ...
- poj 1273 Drainage Ditches (网络流 最大流)
网络流模板题. ============================================================================================ ...
- poj 1273 Drainage Ditches(最大流)
http://poj.org/problem?id=1273 Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Subm ...
- POJ 1273 Drainage Ditches (网络最大流)
http://poj.org/problem? id=1273 Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Sub ...
- POJ 1273 Drainage Ditches
Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 67387 Accepted: 2603 ...
- POJ 1273 Drainage Ditches(网络流dinic算法模板)
POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdi ...
- POJ 1273 Drainage Ditches(网络流,最大流)
Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover ...
- 网络流最经典的入门题 各种网络流算法都能AC。 poj 1273 Drainage Ditches
Drainage Ditches 题目抽象:给你m条边u,v,c. n个定点,源点1,汇点n.求最大流. 最好的入门题,各种算法都可以拿来练习 (1): 一般增广路算法 ford() #in ...
随机推荐
- 多服务器终端交互利器--polysh和atnodes到高逼格日志中心
最近博客更新的少了,相对而言,我在自己的个人公众号里还是挺活跃的,大家可以扫描旁边的二维码,或者微信搜索公众号:“编程一生”加关注. 在分布式的年代,一个应用需要部署到多台服务器上.那么要查看日志文件 ...
- pycharm安装激活
我的版本是pycharm-professional-2016.3.3 总体的安装步骤基本没什么,就是一直下一步,下一步就行了. 重要的最后的注册,找了一堆版本,最后用的server,注册成功. 注册码 ...
- DOM Exception error
INDEX_SIZE_ERR code 1 索引是负值,或者超过了索引值 DOMSTRING_SIZE_ERR code 2 ...
- Red Hat 7.0 DNS服务配置笔记
先挂载镜像,然后配置yum,然后安装yum install -y bind 配置静态 IP.DNS就是他本身的IP地址. 修改DNS的配置文件,在后面加入区域配置信息.vim /etc/named.c ...
- JS基础 复习: Javascript的书写位置
爱创课堂JS基础 复习: Javascript的书写位置复习 js书写位置:body标签的最底部.实际工作中使用书写在head标签内一对script标签里.alert()弹出框.console.log ...
- Linux系列教程(十六)——Linux权限管理之ACL权限
通过前面的两篇博客我们介绍了Linux系统的用户管理,Linux用户和用户组管理之相关配置文件 讲解了用户管理的相关配置文件,包括用户信息文件/etc/passwd,用户密码文件/etc/shadow ...
- Python学习笔记整理总结【语言基础篇】
一.变量赋值及命名规则① 声明一个变量及赋值 #!/usr/bin/env python # -*- coding:utf-8 -*- # _author_soloLi name1="sol ...
- Java实现TFIDF算法
算法介绍 最近要做领域概念的提取,TFIDF作为一个很经典的算法可以作为其中的一步处理. 关于TFIDF算法的介绍可以参考这篇博客http://www.ruanyifeng.com/blog/2013 ...
- sql分区文件删不的可能解决方法
删除数据库分区的时候报错如下: ALTER DATABASE [ITMP2] remove FILE F20170427Msg 5042, Level 16, State 1, Line 1The f ...
- FLP不可能性(FLP impossibility)
FLP不可能性(FLP impossibility) FLP impossibility是一个定理,它证明了在分布式情景下,无论任何算法,即使是只有一个进程挂掉,对于其他非失败进程,都存在着无法达成一 ...