X mod f(x)

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2792    Accepted Submission(s): 1101

Problem Description
Here is a function f(x):
   int f ( int x ) {
    if ( x == 0 ) return 0;
    return f ( x / 10 ) + x % 10;
   }

   Now, you want to know, in a given interval [A, B] (1 <= A <= B <= 109), how many integer x that mod f(x) equal to 0.

 
Input
   The first line has an integer T (1 <= T <= 50), indicate the number of test cases.
   Each test case has two integers A, B.
 
Output
   For each test case, output only one line containing the case number and an integer indicated the number of x.
 
Sample Input
2
1 10
11 20
 
Sample Output
Case 1: 10
Case 2: 3
 
Author
WHU
 
Source
 
/*题意:计算区间内一个数字各位之和能整除该数字的个数
思路:分别计算出[1, b]中符合条件的个数和[1, a-1]中符合条件的个数。
d[l][i][j][k]表示前l位和为i模j的结果为k的数的个数,那么就有方程
d[l+1][i+x][j][(k*10+x)%j] += d[l][i][j][k]
预处理出d[l][i][j][k],然后再逐位统计即可。*/
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std; int bit[];
int dp[][][][];
//d[l][i][j][k]表示前l位和为i模j的结果为k的数的个数
void set()//打表预处理出来你需要的数据
{
int i,j,k,l,x;
for(i = ; i<=; i++)
dp[][][i][] = ;
for(l = ; l<; l++)//枚举的是前l位
for(i = ; i<=l*; i++)//枚举的是当前和,最大和是l*9
for(j = ; j<=; j++)//不可能比81还大,总共才九位数,总和最大就是81,j>81的话得到的就是自己了
for(k = ; k<j; k++)
for(x = ; x<=; x++)//枚举的是当前位上的数
dp[l+][i+x][j][(k*+x)%j] += dp[l][i][j][k];
} //这个(k*10+x)%j是什么意思 //这个状态是前一个状态,位数比等号左边的少一位
//为什么要用k*10+x来模j呐
//因为吧,原来求的是前l位的和,
//现在求得是l+1位的和了,以前的位数
//都向左移动了一位
int solve(int n)
{
if(!n)
return ;
int ans,i,j,k,len;
int sum,tem1,tem2,s,bit[],r;
len = sum = ans = ;
tem1 = tem2 = n;
s = ;
while(tem1)//求每位数之和
{
bit[++len]=tem1%;
tem1/=;
sum+=bit[len];//每位数之和
}
if(n%sum==)//本身要先看是否整除
ans++;
for(i=;i<=len;i++)//前i位
{
sum-=bit[i];//将该位清0
tem2/=;//现在个数是没有个位的
s*=;
tem1=tem2*s;//现在这个数个位上的数是零
for(j=;j<bit[i];j++)//枚举该位的状况(就是遍历这个位上的数)
{
for(k=sum+j;k<=sum+j+*(i-);k++) //该位与更高位的和,而比该位低的和择优9*(i-1)种
{//9*(i-1)因为你枚举每多一位枚举的数字就会多出来9个
if(!k)//和为0的状况不符合
continue;
r=tem1%k;//这里是要保证你枚举到的前i位再加上没枚举到那些位加起来不会超过原来的数
if(r)
r=k-r;//余数大于0,那么k-r得到的数肯定能被k整除
ans+=dp[i-][k-sum-j][k][r];//加上个数
}
tem1+=s/;//标记现在算到哪里,例如1234,一开始t是1230,然后1231,1232,1233,1234,接下来1200,就是1210,1220,1230
}
}
return ans;
} int main()
{
//freopen("in.txt","r",stdin);
int T,l,r,cas = ;
set();//先打表,半打表,将前l位,位数之和是i,并且模上j之后得到k的个数有多少
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&l,&r);
printf("Case %d: %d\n",cas++,solve(r)-solve(l-));
}
return ;
}

自己又写了一遍,虽然都差不多,但是自己写一遍理清了思路

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#define N 10
#define M 82
using namespace std;
int dp[N][M][M][M],g[N];//dp[l][i][j][k]表示前l位的和为i 模上j得数是k的数有多少个
void inti()
{
for(int i=;i<=;i++)
dp[][][i][]=;
//cout<<"ok"<<endl;
for(int l=;l<;l++)//枚举的前l位
for(int i=;i<=l*;i++)//枚举的前l位的和
for(int j=;j<=;j++)//枚举的是你要模的那个数
for(int k=;k<j;k++)//枚举的是模完的结果
for(int x=;x<;x++)//枚举的第l+1位
dp[l+][i+x][j][(k*+x)%j]+=dp[l][i][j][k];
//cout<<"ok"<<endl;
//cout<<"ok"<<endl;
}
int solve(int n)
{
if(!n) return ;
int s,tem1,tem2,sum=,r;
tem1=tem2=n;
s=;
int len=;
while(tem1)
{
g[++len]=tem1%;
tem1/=;
sum+=g[len];
}//分离各位,并且求出来和
int cur=;
if(n%sum==)
cur++;
for(int i=;i<=len;i++)//模拟的是前i位
{
sum-=g[i];//先把这一位清零
tem2/=;
s*=;
tem1=s*tem2;
for(int j=;j<g[i];j++)//枚举的是这个位上的数
{
for(int k=sum+j;k<=sum+j+*(i-);k++)//模拟的是你要模的那个数
{
if(!k) continue;//如果k==0不符合条件
r=tem1%k;
if(r)
r=k-r;
cur+=dp[i-][k-sum-j][k][r];
//cout<<"cur="<<cur<<endl;
//cout<<"dp[i-1][k-sum-j][k][r]="<<dp[i-1][k-sum-j][k][r]<<endl;
}
tem1+=s/;
}
}
return cur;
}
int main()
{
//freopen("in.txt","r",stdin);
//cout<<"ok"<<endl;
inti();
int t,l,r;
scanf("%d",&t);
//cout<<t<<endl;
for(int i=;i<=t;i++)
{
scanf("%d%d",&l,&r);
//cout<<l<<" "<<r<<endl;
printf("Case %d: %d\n",i,solve(r)-solve(l-));
}
return ;
}

HDU X mod f(x)(题解注释)的更多相关文章

  1. HDU - 4389 X mod f(x)(数位dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=4389 题意 为[A,B] 区间内的数能刚好被其位数和整除的数有多少个. 分析 典型的数位dp...比赛时想不出状 ...

  2. HDU 4389——X mod f(x)(数位DP)

    X mod f(x) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Probl ...

  3. HDOJ 4389 X mod f(x)

    数位DP........ X mod f(x) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  4. HDU4389:X mod f(x)(数位DP)

    Problem Description Here is a function f(x): int f ( int x ) { if ( x == 0 ) return 0; return f ( x ...

  5. hdu 4389 X mod f(x) 数位DP

    思路: 每次枚举数字和也就是取模的f(x),这样方便计算. 其他就是基本的数位Dp了. 代码如下: #include<iostream> #include<stdio.h> # ...

  6. HDU 4389 X mod f(x)

    题意:求[A,B]内有多少个数,满足x % f(x) == 0. 解法:数位DP.转化为ans = solve(b) - solve(a - 1).设dp[i][sum][mod][r]表示长度为i, ...

  7. HDU 2157 How many ways?? 题解

    题目 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的路线 ...

  8. HDU 2815 Mod Tree 离散对数 扩张Baby Step Giant Step算法

    联系:http://acm.hdu.edu.cn/showproblem.php?pid=2815 意甲冠军: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQ ...

  9. hdu 2815 Mod Tree (exBSGS)

    http://acm.hdu.edu.cn/showproblem.php?pid=2815 //解 K^D ≡ N mod P #include<map> #include<cma ...

随机推荐

  1. WebSocket部署服务器外网无法连接解决方案

    首先要说的是我遇见的问题: WebSocket connection to 'ws://www.xxxx.com/xxx/xx' failed: Error during WebSocket hand ...

  2. 【个人笔记】《知了堂》node.js简介及创建应用

    Node.js是什么? Node.js是建立在谷歌Chrome的JavaScript引擎(V8引擎)的Web应用程序框架.Node.js自带运行时环境可在Javascript脚本的基础上可以解释和执行 ...

  3. 化繁为简 经典的汉诺塔递归问题 in Java

    问题描述   在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑 ...

  4. python之路第五篇之递归(进阶篇:续:经典例子剖析)

    递归 在函数内部,可以调用其他函数; 如果一个函数在内部调用自身本身,这个函数就是递归函数. 例如,我们来计算阶乘: n! = 1 x 2 x 3 x ... x n, 用函数f1(n)表示,可以看出 ...

  5. input 事件与汉字输入法:使用compositionend事件解决

    input 事件与汉字输入法:使用compositionend事件解决 在使用<input type="text">的input事件的时候 会遇到中文输入法的" ...

  6. webservice接口国内手机号码归属地查询

    操作步骤: 1.打开eclipse,新建web工程MobileCodeClient 2.打开运行窗口 右击工程名选择properties 切换到运行窗口,按图切换到相应的目录里 执行命令: wsdl2 ...

  7. 如何将解压版的tomcat设置为windows 服务启动

    在web服务器上通常需要是web容器随开机自动启动,恰好Tomcat可以作为服务启动,只要经过我们简单的配置,就可以将免安装版的Tomcat添加到系统服务中. 首先需要配置以下环境变量: JAVA_H ...

  8. List之Union(),Intersect(),Except() 即并集,交集,差集运算。

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  9. Redis密码设置与访问限制(网络安全)

    现在用redis缓存热数据越来越常见了,甚至一些配置,开关等等的东西也写到redis里.原因就是redis简单高效.redis里的数据也越来越重要了,例如一些业务的中间数据会暂时存放在redis里,所 ...

  10. 解决由于VNC日志导致服务器磁盘100%

    今天通过SSH连接服务器看到磁盘直接100%了.于是通过 sudo du -h --max-depth=1 发现某个用户下面占用了100个G.于是切换进去看了一下.发现VNC的log占满了整个磁盘.然 ...