Container With Most Water

题目链接

Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

Note: You may not slant the container.


算法1:枚举容器的两个边界,时间复杂度O(n^2)。大数据超时

class Solution {
public:
int maxArea(vector<int> &height) {
int res = 0, n = height.size();
for(int i = 0; i < n; i++)//左边界
for(int j = i+1; j < n; j++)//右边界
{
int tmp = (j-i)*min(height[i],height[j]);
if(res < tmp)res = tmp;
}
return res;
}
};

 

对上面的稍加改进,根据当前的已经计算出来的结果以及左边界的值,可以算出容器右边界的下界。不过还是超时

class Solution {
public:
int maxArea(vector<int> &height) {
int res = 0, n = height.size();
for(int i = 0; i < n; i++)//左边界
{
if(height[i] == 0)continue;
for(int j = max(i+1, res/height[i]+i); j < n; j++)//右边界
{
int tmp = (j-i)*min(height[i],height[j]);
if(res < tmp)res = tmp;
}
}
return res;
}
};

 

算法2:时间复杂度O(nlogn)。

构建结构体包含height和height在原数组中的位置

struct Node

    {

        int height;

        int index;

};

对该结构体数组按照height的值递增排序,假设排序后的数组为vec.

 

假设f[i] 表示数组vec[i,i+1,…]内所有height按照原来的位置顺序排列好以后的最大水量

那么f[i-1]可以在O(1)时间内计算出来:因为vec[i-1].height 小于vec[i,i+1,…]内的所有height,所以以vec[i-1].index为边界的容器高度为vec[i-1].height,最大水量只需要分别计算vec[i,i+1,…]内按原始位置排列最前面和最后面的height,取两者的较大值。即下图中,黑色是最低的,要计算以黑色为边界的容器的最大水量,只需要分别和第一个和最后一个计算,去两者较大值

class Solution {
struct Node
{
int height;
int index;
Node(int h, int i):height(h),index(i){}
Node(){}
bool operator < (const Node &a)const
{
return height < a.height;
}
};
public:
int maxArea(vector<int> &height) {
int res = 0, n = height.size();
if(n <= 1)return 0;
vector<Node>vec(n);
for(int i = 0; i < n; i++)
{
vec[i].index = i;
vec[i].height = height[i];
}
sort(vec.begin(), vec.end()); int start = vec[n-1].index, end = start;//记录已经处理完的height的原始位置的左右端点
for(int i = n-2; i >= 0 ; i--)
{
start = min(start, vec[i].index);
end = max(end, vec[i].index);
res = max(res, max(vec[i].height*(vec[i].index - start), vec[i].height*(end - vec[i].index)));
}
return res;
}
};

 

 

算法3:时间复杂度O(n),两个指针i, j分别从前后向中间移动,两个指针分别表示容器的左右边界。每次迭代用当前的容量更新最大容量,然后把高度小的边界对应的指针往中间移动一位。                                         本文地址

正确性证明:由于水的容量是有较小的那个边界决定的,因此某次迭代中,假设height[i] < height[j],那么j 减小肯定不会使水的容量增大,只有i 增加才有可能使水的容量增大。但是会不会有这种可能:当前的i 和 某个k (k > j)是最大容量, 这也是不可能的,因为按照我们的移动规则,既然右指针从k 移动到了j,说明i 的左边一定存在一个边界 m,使m > k,那么[m, k]的容量肯定大于[i, k],所以[i,k]不可能是最大容量。可以参考here

class Solution {
public:
int maxArea(vector<int> &height) {
int res = 0, n = height.size();
int left = 0, right = n-1;
while(left < right)
{
res = max(res, (right-left)*min(height[left], height[right]));
if(height[left] < height[right])
left++;
else right--;
}
return res;
}
};

Trapping Rain Water

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.

For example,

Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.

The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.

注意和上一题的区别,上一题相当于在每个位置放一个挡板,挡板之间可以蓄水;这一题是放置宽度为1的柱子,柱子上面可以蓄水。

 

算法4:分析某个柱子,发现该柱子上水的高度和其左右两边的最高柱子有关,设该柱子左边所有柱子中最高的为leftmax,右边所有柱子中最高的为rightmax,如果min(leftmax, rightmax) 大于该柱子的高度,那么该柱子上可以蓄水为min(leftmax, rightmax) - 该柱子高度,如果min(leftmax, rightmax) <= 该柱子高度,则该柱子上没有蓄水。

可以从后往前扫描一遍数组求得某个柱子右边的最高柱子,从前往后扫描一遍数组求得某个柱子左边的最高柱子, 然后按照上面的分析可以求得所有的蓄水量。

class Solution {
public:
int trap(int A[], int n) {
int res = 0;
vector<int>rightMax(n);//柱子右边最大的柱子高度
int maxv = 0;
for(int i = n-1; i >= 0; i--)
{
rightMax[i] = maxv;
maxv < A[i] ? maxv = A[i] : maxv;
}
maxv = 0;
int conHeight;
for(int i = 0; i < n; i++)
{//此时maxv为柱子i左边最大的柱子高度
conHeight = min(maxv, rightMax[i]);
if(conHeight > A[i])
res += conHeight - A[i];
maxv < A[i] ? maxv = A[i] : maxv;
}
return res;
}
};

上面的代码时间空间复杂度都是O(n),扫描了两次数组

 

算法5:可以换一种思路,如下图,如果我们求出了两个红色框的面积,然后再减去框内黑色柱子的面积,就是水的面积了,时间复杂度O(N),空间O(1), 数组扫描2次

如何求红色框内的面积呢,我们先求出最大的柱子高度,然后左右分开求。求面积是是一层一层的累加

class Solution {
public:
int trap(int A[], int n) {
int maxHeight = 0, maxIdx = 0;
for(int i = 0; i < n; i++)//求最大高度
if(A[i] > maxHeight)
{
maxHeight = A[i];
maxIdx = i;
}
int height = 0;
int pillarArea = 0;//柱子面积
int totalArea = 0;//总面积
for(int i = 0; i < maxIdx; i++)
{
if(A[i] > height)
{
totalArea += (A[i] - height)*(maxIdx - i);
height = A[i];
}
pillarArea += A[i];
}
height = 0;
for(int i = n-1; i > maxIdx; i--)
{
if(A[i] > height)
{
totalArea += (A[i] - height)*(i - maxIdx);
height = A[i];
}
pillarArea += A[i];
}
return totalArea - pillarArea;
}
};

 

算法6:参考here,也是和算法5一样求面积,但是这里利用上一题的左右指针思想,只需要扫描一遍数组

class Solution {
public:
int trap(int A[], int n) {
int left = 0, right = n-1;
int totalArea = 0, pillarArea = 0, height = 0;
while(left <= right)
{
if(A[left] < A[right])
{
if(A[left] > height)
{
totalArea += (A[left]-height)*(right - left + 1);
height = A[left];
}
pillarArea += A[left];
left++;
}
else
{
if(A[right] > height)
{
totalArea += (A[right]-height)*(right - left + 1);
height = A[right];
}
pillarArea += A[right];
right--;
}
}
return totalArea - pillarArea;
}
};

 

 

【版权声明】转载请注明出处http://www.cnblogs.com/TenosDoIt/p/3812880.html

LeetCode:Container With Most Water,Trapping Rain Water的更多相关文章

  1. [LeetCode] 接雨水,题 Trapping Rain Water

    这题放上来是因为自己第一回见到这种题,觉得它好玩儿 =) Trapping Rain Water Given n non-negative integers representing an eleva ...

  2. 【LeetCode每天一题】Trapping Rain Water(获得雨水的容量)

    Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...

  3. LeetCode 42. 接雨水(Trapping Rain Water)

    题目描述 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水. 上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况 ...

  4. leetcode 11. Container With Most Water 、42. Trapping Rain Water 、238. Product of Array Except Self 、407. Trapping Rain Water II

    11. Container With Most Water https://www.cnblogs.com/grandyang/p/4455109.html 用双指针向中间滑动,较小的高度就作为当前情 ...

  5. [LeetCode] Trapping Rain Water 收集雨水

    Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...

  6. [LeetCode] 42. Trapping Rain Water 收集雨水

    Given n non-negative integers representing an elevation map where the width of each bar is 1, comput ...

  7. [LeetCode] Trapping Rain Water II 收集雨水之二

    Given an m x n matrix of positive integers representing the height of each unit cell in a 2D elevati ...

  8. [Leetcode][Python]42: Trapping Rain Water

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 42: Trapping Rain Waterhttps://oj.leetc ...

  9. leetcode#42 Trapping rain water的五种解法详解

    leetcode#42 Trapping rain water 这道题十分有意思,可以用很多方法做出来,每种方法的思想都值得让人细细体会. 42. Trapping Rain WaterGiven n ...

随机推荐

  1. cocos2d-x源码分析(1)

    class CC_DLL CCCopying { public: virtual CCObject* copyWithZone(CCZone* pZone); }; class CC_DLL CCZo ...

  2. [Chapter 3 Process]Practice 3.3 Discuss three major complications that concurrent processing adds to an operating system.

    3.3  Original version of Apple's mobile iOS operating system provied no means of concurrent processi ...

  3. win7自带windows media player 已停止工作

    解决方法如下: 在计算机开始,菜单找到控制面板 ,然后打开程序和功能,选择打开或关闭window功能,媒体功能.再取消windows Media Center Windows MediaPlayer选 ...

  4. iOS多线程编程之NSThread的使用(转)

    本文由http://blog.csdn.net/totogo2010/原创 1.简介: 1.1 iOS有三种多线程编程的技术,分别是: 1..NSThread 2.Cocoa NSOperation  ...

  5. 中兴手机关闭3G网络

    手机总是自动在2G和3G之间切换,关闭3G算了. 拨*983*683# 出来画面,然后选GSM Only即可 网上还有另一种方法: *#*#4636#*#* 在这个里,我没有找到GSM Only

  6. 数据库知识整理<七>

    组合查询: 7.1使用子查询: 嵌套在其他查询中的查询,我们称之为子查询.子查询本身也可能包含一个子查询.子查询也称为内部查询,而包含子查询的语句也称为外部查询. 所有的子查询可以被分为两个类别:子查 ...

  7. PHP访问数据库

    1.原生mysql方式 <?php //最原生态的访问方式,不过SQL注入是个麻烦事 $con = mysql_connect("localhost","root& ...

  8. 记一次SQLServer数据库误删数据找回

            昨天 同事在本机清理数据库表时,连接到了生产机,误删了二十几张表,幸好是晚上加班的时候删除的,生产机上当时是一天一备份,还原备份是最后的策略,最关键的还是要找回数据.         ...

  9. [C#] 與Android共舞–手機post資料給Server (转帖)

    最近在搞安卓,跟Server溝通是一定要的,這範例很簡單,就是我在Android 上面,透過POST 的方式傳資料給 Server ,則Server 收到值後直接回傳, Server side 是用a ...

  10. 《The Book of CSS3》学习笔记

    一.浏览器前缀 E{ -moz-name : value; /* Firefox */ -ms-name : value; /* IE */ -o-name : value; /* Opera */ ...