Miller-Rabin与Pollard-Rho备忘
Miller-Rabin素性测试算法:
根据费马小定理当p为素数时成立,所以如果存在一个a使x不满足此定理,则x必然不为素数。
但这是充分条件而不是必要条件,所以对于每个a,可能存在满足定理的x,这时就要选取多个a同时检测,这种验证素性的方法即为Miller-Rabin算法。
当a取2,3,5,7时,可以直接检测1e13内的所有整数。
但是存在非素数通过检测,这时需要进行二次检测。
可以证明当p为奇素数时,$x^2\equiv 1(mod\ p)$的解有且仅有两个:1和p-1。根据这个定理可以再次检测出一些非素数。
但是仍然存在一些数无法辨别,这些数被称为“强伪素数”,多选取一些数为底数检测即可(一般在[1,p)内选3个左右做二次检测就可以保证一定的正确率了)。
概括一下算法的具体流程:
1.先特判掉1,2和2的倍数。
2.选取3个以上[1,p)的数a。
3.对每个a先将p-1中2的因子去除,再逐个加上并实时检测是否出现不合法情况。
4.同时要注意判定$a^{p-1}\equiv 1(mod\ p)$
Pollard-Rho质因数分解算法:
一种复杂度证明较为复杂的算法,主要思想是先求出n的一个因子p,然后对于p和n/p分别递归下去,如果发现p为素数则停止递归。(这里判断素数需要用到Miller-Rabin)。
主要思想是,让a和b同时在$f(x)=x^2+c$的轨迹上走(c需要变化),每2的次幂步进行一次a=b。每次判定若gcd(|a-b|,n)在(1,n)中则返回,当a==b时退出。
这样的算法,如果将a和b直到a=b的轨迹画出来,会是一条链加一个环,a每次在上面走1步,b走两步,形如$\rho$。
#include<cstdio>
#include<vector>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; vector<ll>ls;
const int A[]={,,,,,,,};
ll T,e,n,c,d,y,p,r,w,mx;
ll Rand(ll l,ll r){ return (((ll)rand()<<)+rand())%(r-l+)+l; }
ll gcd(ll a,ll b){ return (b) ? gcd(b,a%b) : a; } ll ksc(ll a,ll b,ll p)
{
ll t=a*b-(ll)((long double)a*b/p+0.5)*p;
return (t<)?t+p:t;
} ll ksm(ll a,ll b,ll mod){
ll res=;
for (; b; a=ksc(a,a,mod),b>>=)
if (b & ) res=ksc(res,a,mod);
return res;
} ll find(ll n,int c){
ll i=,k=,x=Rand(,n-),y=x,d;
while (){
i++; x=(ksc(x,x,n)+c)%n; d=gcd(abs(y-x),n);
if (d> && d<n) return d;
if (y==x) return -;
if (i==k) y=x,k<<=;
}
} ll Rho(ll n,int c){ ll p=-; while (p==-) p=find(n,c--); return p; } bool chk(ll a,ll n){
ll m=n-,x,y; int k=;
while (!(m&)) m>>=,k++;
x=ksm(a,m,n);
rep(i,,k){
y=ksm(x,,n);
if (y== && x!= && x!=n-) return ;
x=y;
}
return y!=;
} bool Miller(ll n){
if (n==) return ;
if (!(n&)) return ;
rep(i,,) if (chk(Rand(,n-),n)) return ;
return ;
} void Fac(ll x,int c){
if (x==) return;
if (Miller(x)) { ls.push_back(x); return; }
ll p=Rho(x,c); Fac(p,c);
while (x%p==) x/=p;
Fac(x,c);
} int main(){
for (scanf("%lld",&T); T--; ){
scanf("%lld",&n); ls.clear();
if (Miller(n)) { puts("Prime"); continue; }
Fac(n,); mx=;
for (vector<ll>::iterator it=ls.begin(); it!=ls.end(); it++) mx=max(mx,*it);
printf("%lld\n",mx);
}
return ;
}
Miller-Rabin与Pollard-Rho备忘的更多相关文章
- POJ2429 - GCD & LCM Inverse(Miller–Rabin+Pollard's rho)
题目大意 给定两个数a,b的GCD和LCM,要求你求出a+b最小的a,b 题解 GCD(a,b)=G GCD(a/G,b/G)=1 LCM(a/G,b/G)=a/G*b/G=a*b/G^2=L/G 这 ...
- POJ1811- Prime Test(Miller–Rabin+Pollard's rho)
题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两 ...
- Pollard rho算法+Miller Rabin算法 BZOJ 3668 Rabin-Miller算法
BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 1044 Solved: 322[Submit][ ...
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- HDU 3864 D_num Miller Rabin 质数推断+Pollard Rho大整数分解
链接:http://acm.hdu.edu.cn/showproblem.php? pid=3864 题意:给出一个数N(1<=N<10^18).假设N仅仅有四个约数.就输出除1外的三个约 ...
- poj 1811 Pallor Rho +Miller Rabin
/* 题目:给出一个数 如果是prime 输出prime 否则输出他的最小质因子 Miller Rabin +Poller Rho 大素数判定+大数找质因子 后面这个算法嘛 基于Birthday Pa ...
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- POJ2429_GCD & LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】
GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...
- POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】
Eddy's research I Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
随机推荐
- [学习笔记]扩展LUCAS定理
可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互 ...
- async的用法
package com.example.administrator.myapplication; import android.os.AsyncTask; import android.util.Lo ...
- 使用fuser查询文件、目录、socket端口的占用进程
fuser可用于查询文件.目录.socket端口和文件系统的使用进程 1.查询文件和目录使用者 fuser最基本的用法是查询某个文件或目录被哪个进程使用: # fuser -v ./ ...
- oracleLinux7上安装oracle11g r2(脚本简单配置环境)
一 环境脚本简单配置 #!/bin/bashmv /etc/yum.repos.d/* /tmpmv iso.repo /etc/yum.repos.d/tar zxvf a.tar.gzmv 7Se ...
- Linux 下打包报错:enospc (no space left on device)
昨天打了个包,早上发现很多页面js加载404,一查原来打包的min文件夹下是空的,打包出错了 Error code: enospc du -sh * rm -f 文件名称 rm -rf 目录名称 前端 ...
- javascript中Date使用总结(转)
//全局函数 Date //Date 类的静态方法 Date.parse Date.UTC //Date 对象的建立方法 new Date() new Date(毫秒数) new Date(标准时间格 ...
- RPC-整体概念
RPC概述 RPC(Remote Procedure Call),即远程过程调用,是一种通过网络从远程计算机程序上请求服务而不需要了解底层网络技术的协议,实现调用远程主机上的方法就像调用本地方法一样. ...
- swift中的尾随闭包的用法
尾随闭包就是这个函数的最后一个参数是一个闭包,所以规定这个闭包既可以写在函数的参数括号里面,也可以直接放在最后面来使用,就像重新给这个函数定义了一次一样,有些怪,不过用的时候,可以把闭包写在外面的.这 ...
- bzoj 2819 博弈论
我们可以把 n为偶数的时候,n*n的棋盘看成若干个不相交的2*1的格子,那么对于每个2*1的格子,如果先手选了其中的一个,另一个人都可以选另一个,所以最后使先手没有可以选的格子,先手必败(这里的先手并 ...
- MySQL中EXISTS的用法
比如在Northwind数据库中有一个查询为 SELECT c.CustomerId,CompanyName FROM Customers c WHERE EXISTS( SELECT OrderID ...