Description

  小A的楼房外有一大片施工工地,工地上有N栋待建的楼房。每天,这片工地上的房子拆了又建、建了又拆。他经常无聊地看着窗外发呆,数自己能够看到多少栋房子。
  为了简化问题,我们考虑这些事件发生在一个二维平面上。小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度。如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的。
  施工队的建造总共进行了M天。初始时,所有楼房都还没有开始建造,它们的高度均为0。在第i天,建筑队将会将横坐标为Xi的房屋的高度变为Yi(高度可以比原来大---修建,也可以比原来小---拆除,甚至可以保持不变---建筑队这天什么事也没做)。请你帮小A数数每天在建筑队完工之后,他能看到多少栋楼房?

Input

  第一行两个正整数N,M
  接下来M行,每行两个正整数Xi,Yi

Output

  M行,第i行一个整数表示第i天过后小A能看到的楼房有多少栋

Sample Input

3 4
2 4
3 6
1 1000000000
1 1

Sample Output

1
1
1
2
数据约定
  对于所有的数据1<=Xi<=N,1<=Yi<=10^9,N,M<=100000
 
 
 
=========华丽丽的分割线============
虽然是一个清华集训的题目,不过还是可做的嘛。。。
一开始的时候自己写了一个程序,然后怎么都没有调出来。
考虑本题,给出一个数列,然后要求支持单点修改以及询问比自己左边所有数都大的数就几个。
考虑线段树,维护出一段中的高度最大值以及别的数都不考虑的情况下(这个一定不能漏)比这样的数有几个。
考虑合并两个线段,高度的最大值是很容易合并的,直接取一个max就可以了。
对于贡献度,我们发现一个线段的左半部分所有满足的数在原来的线段中一定满足,于是我们只需要考虑右半部分。
我们写一个函数calc(node,k)表示node这个线段在左侧有一个大小为k的数的时候内部满足条件的数的个数。
于是发现如果这个线段的左半部分的最大值小于等于k,那么左半部分贡献就是0,直接返回calc(node*2+1,k),
如果左半部分最大值大于k,那么右半部分原本的个数是不会变的,然后再加上calc(node*2,k)就可以了,
时间复杂度O(nlog^2n),
听说这题卡精度,在吕爷爷的帮助下我学会了fraction,代码如下:

 #include <bits/stdc++.h>
#define Maxn 100007
using namespace std;
int read()
{
int x=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct fraction
{
int dx,dy;
};
bool operator >(fraction a, fraction b)
{
return (1LL*a.dx*b.dy>1LL*a.dy*b.dx);
}
bool operator >=(fraction a, fraction b)
{
return (1LL*a.dx*b.dy>=1LL*a.dy*b.dx);
}
bool operator <(fraction a, fraction b)
{
return (1LL*a.dx*b.dy<1LL*a.dy*b.dx);
}
bool operator <=(fraction a, fraction b)
{
return (1LL*a.dx*b.dy<=1LL*a.dy*b.dx);
}
int n,m;
struct seg
{
int lx,rx,cnt;
fraction hmax;
};
seg tree[Maxn*];
void build(int node, int l, int r)
{
tree[node].lx=l,tree[node].rx=r,tree[node].cnt=;
tree[node].hmax=(fraction){,};
if (tree[node].lx==tree[node].rx) return;
int mid=(l+r)/;
build(node*,l,mid),build(node*+,mid+,r);
}
int calc(int node, fraction h)
{
if (tree[node].hmax<=h) return ;
if (tree[node].lx==tree[node].rx) return ;
if (tree[node*].hmax<=h) return calc(node*+,h);
else return tree[node].cnt-tree[node*].cnt+calc(node*,h);
}
void update(int node, int pos, fraction h)
{
if (tree[node].rx<pos) return;
if (tree[node].lx>pos) return;
if (tree[node].lx==tree[node].rx)
{
tree[node].hmax=h;
tree[node].cnt=;
return;
}
update(node*,pos,h),update(node*+,pos,h);
tree[node].hmax=max(tree[node*].hmax,tree[node*+].hmax);
tree[node].cnt=tree[node*].cnt+calc(node*+,tree[node*].hmax);
}
int main()
{
n=read(),m=read();
build(,,n);
while (m--)
{
int x=read(),y=read();
update(,x,(fraction){y,x});
printf("%d\n",tree[].cnt);
}
return ;
}
 

【数据结构】bzoj2957楼房重建的更多相关文章

  1. BZOJ2957: 楼房重建(线段树&LIS)

    2957: 楼房重建 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3727  Solved: 1793[Submit][Status][Discus ...

  2. Bzoj2957 楼房重建

    Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1516  Solved: 723[Submit][Status][Discuss] Descripti ...

  3. [bzoj2957][楼房重建] (线段树)

    Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些 ...

  4. 【分块】bzoj2957 楼房重建

    http://www.cnblogs.com/wmrv587/p/3843681.html ORZ 分块大爷.思路很神奇也很清晰. 把 块内最值 和 块内有序 两种良好的性质结合起来,非常棒地解决了这 ...

  5. 【经典问题】bzoj2957: 楼房重建

    经典问题:动态维护上升子序列长度 进阶问题:[经典问题]#176. 栈 Description 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无 ...

  6. BZOJ2957 楼房重建 【线段树】

    题目 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维 ...

  7. bzoj2957 楼房重建——线段树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2957 线段树维护两个值:cnt 能看到的最多楼房数: mx 最大斜率数: 对于一段区间,从左 ...

  8. BZOJ2957: 楼房重建(分块)

    题意 题目链接 Sol 自己YY出了一个\(n \sqrt{n} \log n\)的辣鸡做法没想到还能过.. 可以直接对序列分块,我们记第\(i\)个位置的值为\(a[i] = \frac{H_i}{ ...

  9. bzoj2957楼房重建

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2957 线段树.每个点记录斜率,要一个单增的序列长度(从1开始). 线段树每个点记录自己区间的 ...

随机推荐

  1. 在Linux下通过rpm打包发布Java程序

    这个东西涉及的内容较多,根据下面这些文章慢慢学习 一个简单的例子 http://blog.csdn.net/king_on/article/details/7169384 按照文章中的步骤来,打包之后 ...

  2. Python 3基础教程28-内置函数

    本文介绍Python中的内置函数,Python中有很多内置的,功能强大的函数,可以帮我们解决很多问题,有些方法,根本不需要你去再次编写实现函数,你直接调用就可以.在这之前,需要介绍下,如何在windo ...

  3. url解读

    我刚刚学习的时候,我抓到包不知道哪个是协议.哪个是是服务器地址.哪个是端口号...不知道有没有老铁遇到跟我一样的. 接口:http://172.168.12.0:8888/old/login.do 解 ...

  4. Python 3 学习笔记之——键盘输入和读写文件

    1. 键盘输入 Python提供了 input() 内置函数从标准输入读入一行文本,默认的标准输入是键盘.input 可以接收一个 Python 表达式作为输入,并将运算结果返回. str = inp ...

  5. ThinkPHP自定义成功界面、失败界面、异常界面

    在ThinkPHP的手册中,附录里边的配置参考,有一个模板引擎设置. 或者在手册里面的控制器,跳转和重定向里面. 紧接着,就讲到了如何自定义这些界面. 将上诉的配置参数写到到配置文件里,修改路径到自己 ...

  6. POJ 3177 Redundant Paths & POJ 3352 Road Construction(双连通分量)

    Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...

  7. python学习笔记-list的用法

    1.list的定义 list = [] list = [1,2,'a','b'](list中的元素不一定是一个类型) 2.list的操作 1)list.append(value) 2)list.ins ...

  8. oracle带条件的Insert语句

    背景 在一条记录完结时,自动向表中加入一条新的记录,采用的是事务处理,修改现有记录,并新增一条记录,直接采用的insert语句会报错 //主键冲突 unique constraint (XXXXXX) ...

  9. 【CF Round 434 A. k-rounding】

    Time limit per test1 second memory limit per test 256 megabytes input standard input output standard ...

  10. [学习笔记]可持久化数据结构——数组、并查集、平衡树、Trie树

    可持久化:支持查询历史版本和在历史版本上修改 可持久化数组 主席树做即可. [模板]可持久化数组(可持久化线段树/平衡树) 可持久化并查集 可持久化并查集 主席树做即可. 要按秩合并.(路径压缩每次建 ...