[JSOI2010]部落划分
一道不错的题,解法不少。
最易于理解的是最小生成树的做法:
首先每两个点之间都连一条长度为这两个点的距离的边,形成完全图。
然后跑最小生成树,直到剩k个联通块,这时候合并成k - 1个联通块的边的长度就是答案(注意,是连接两个联通块的边,否则就不是部落间的距离了)。
正确性很显然。因为这保证了部落内的距离尽量小,则部落外的距离尽量大,所以靠的最近的两个部落也就尽可能的远离。
还有一种二分答案的方法:
每一次把距离小于mid的点都划分成一个部落,最后看形成的部落总数和k的关系,如果小于k,向左二分;否则向右二分。
时间复杂度都是O(ElogE),E为边数,等于n * (n - 1) / 2。(最小生成树算法排序时间O(ElogE),跑kruskal时时O(E)的)
方法一的代码
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-;
const int maxn = 1e3 + ;
const int maxe = 5e5 + ;
inline ll read()
{
ll ans = ;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch)) {ans = ans * + ch - ''; ch = getchar();}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < ) x = -x, putchar('-');
if(x >= ) write(x / );
putchar(x % + '');
} int n, k;
struct Node
{
int x, y;
}a[maxn];
struct Edge
{
int x, y; ll c;
bool operator < (const Edge &oth)const
{
return c < oth.c;
}
}e[maxe];
int ecnt = ; ll calc(Node a, Node b)
{
return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
} int p[maxn];
void init()
{
for(int i = ; i <= n; ++i) p[i] = i;
}
int Find(int x)
{
return x == p[x] ? x : p[x] = Find(p[x]);
} int main()
{
n = read(); k = read();
init();
for(int i = ; i <= n; ++i) a[i].x = read(), a[i].y = read();
for(int i = ; i < n; ++i)
for(int j = i + ; j <= n; ++j)
e[++ecnt] = (Edge){i, j, calc(a[i], a[j])};
sort(e + , e + ecnt + );
int cnt = n;
for(int i = ; i <= ecnt; ++i)
{
int px = Find(e[i].x), py = Find(e[i].y);
if(px != py)
{
if(cnt-- == k) {printf("%.2lf\n", sqrt(e[i].c)); return ;}
p[px] = py;
}
}
return ;
}
[JSOI2010]部落划分的更多相关文章
- 【BZOJ1821】[JSOI2010]部落划分(二分,并查集)
[BZOJ1821][JSOI2010]部落划分(二分,并查集) 题面 BZOJ 洛谷 题解 二分答案,把距离小于二分值的点全部并起来,\(\mbox{check}\)一下是否有超过\(K\)个集合就 ...
- 洛谷P4047 [JSOI2010]部落划分题解
洛谷P4047 [JSOI2010]部落划分题解 题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落 ...
- P4047 [JSOI2010]部落划分 方法记录
原题链接 [JSOI2010]部落划分 题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落之间则经常 ...
- BZOJ 1821 JSOI2010 部落划分 Group prim
Description 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落之间则经常发生争斗.只是,这一切都成 ...
- BZOJ1821:[JSOI2010]部落划分(并查集,二分)
Description 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落之间则经常发生争斗.只是,这一切都成 ...
- 「LuoguP4047」 [JSOI2010]部落划分
Description 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落之间则经常发生争斗.只是,这一切都成 ...
- P4047 [JSOI2010]部落划分(最小生成树)
题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落之间则经常发生争斗.只是,这一切都成为谜团了——聪 ...
- 题解 洛谷 P4047 【[JSOI2010]部落划分】
我觉得几乎就是一道最小生成树模板啊... 题解里许多大佬都说选第n-k+1条边,可我觉得要这么讲比较容易理解 (虚边为能选的边,实边为最小生成树) 令n=5,k=2,(1,3)<(1,2)< ...
- [JSOI2010]部落划分 最小生成树
一道最小生成树经典题 由于是最靠近的两个部落尽可能远,如果我们先处理出任意两个居住点之间的距离并将其当做边,那么我们可以发现,因为在一个部落里面的边是不用计入答案的,所以应该要尽量把小边放在一个部落里 ...
随机推荐
- 设计模式学习总结(五)创建者模式(Builder)
创建者模式,主要针对某些产品有类似的生产步骤,且有需要有先后顺序的进行各个部件的生成. 一.示例展示: 通过学习及总结,以下是我完成的创建者模式的示例: 1.创建产品类:Laptop public c ...
- oracle 笔记---(三)__体系架构
查看控制文件位置 SQL> show parameter control_files; NAME TYPE VALUE ------------------------------------ ...
- npm是什么NPM的全称是Node Package Manager
npm是什么NPM的全称是Node Package Manager
- java里面的package/import 和PHP里面的namespace/use 是一模一样的吗
java里面的package/import 和PHP里面的namespace/use 是一模一样的吗? java: php package mypage; namespace mypage; impo ...
- bzoj 5217: [Lydsy2017省队十连测]航海舰队
Description Byteasar 组建了一支舰队!他们现在正在海洋上航行着.海洋可以抽象成一张n×m 的网格图,其中有些位置是" .",表示这一格是海水,可以通过:有些位置 ...
- 在 Visual Studio 中调试 XAML 设计时异常
在 Visual Studio 中进行 WPF, UWP, Silverlight 开发时,经常会遇到 XAML 设计器由于遭遇异常而无法正常显示设计器视图的情况.很多时候由于最终生成的项目在运行时并 ...
- PAT 1062 Talent and Virtue
#include <cstdio> #include <cstdlib> #include <cstring> #include <vector> #i ...
- django内置组件——ContentTypes
一.什么是Django ContentTypes? Django ContentTypes是由Django框架提供的一个核心功能,它对当前项目中所有基于Django驱动的model提供了更高层次的抽象 ...
- easyui datagrid 本地json数据 实现删除
html代码:<a href='javascript:void(0);' onclick='Delete(\""+ index +"\")' class= ...
- FCKEditor编辑器添加中文字体的方法
默认情况下,FCKEditor在进行文本编辑时,无法使用中文字体.让其添加中文字体的方法: 1.打开 fckconfig.js 文件,找到第154行(大概),会发现: 程序代码: FCKConfig. ...