题目描述

Of course our child likes walking in a zoo. The zoo has n areas, that are numbered from 1 to n. The i-th area contains ai animals in it. Also there are m roads in the zoo, and each road connects two distinct areas. Naturally the zoo is connected, so you can reach any area of the zoo from any other area using the roads.

Our child is very smart. Imagine the child want to go from area p to area q. Firstly he considers all the simple routes from p to q. For each route the child writes down the number, that is equal to the minimum number of animals among the route areas. Let's denote the largest of the written numbers as f(p, q). Finally, the child chooses one of the routes for which he writes down the value f(p, q).

After the child has visited the zoo, he thinks about the question: what is the sum of f(p, q) for all pairs p, q (p ≠ q)? Can you answer his question?

对于一张图我们定义一个快乐值为f(p,q)为p到q的简单路径上最小点权值的最大值,求出所有f(p,q)(p != q)的和。(CF437D是求的平均值, 需要在此基础上除以一个(n(n-1)))

输入输出格式

输入格式:

The first line contains two integers n and m (2 ≤ n ≤ 10^5; 0 ≤ m ≤ 10^5). The second line contains n integers: a1, a2, ..., an (0 ≤ ai ≤ 10^5). Then follow m lines, each line contains two integers xi and yi (1 ≤ xi, yi ≤ n; xi ≠ yi), denoting the road between areas xi and yi.

All roads are bidirectional, each pair of areas is connected by at most one road.

第一行输入两个数n,m表示点数和边数

第二行有n个数,表示每个点的权值

第三行到第3 + m行每行有两个数,表示连个点之间有条边

输出格式:

Output a integer — the value of sum .

一行一个整数,表示所有f(u, v)  (u != v)的和。


题解

由题目的描述我们可以知道我们所有要经过的路径一定是在该图的最大生成树上的,但是这道题没有边权只有点权,所以我们要定义两个点之间的边权w[u,v] = min(a[u],a[v]) (w[u, v]表示两点之间的边权,a[u]表示u的点权)。在有了这棵树之后,我们需要的就只是两个点之间的路径权值了。刚开始我想了n^2暴力枚举两个点,然后求LCA之后再求最短长度,但时间超了,于是我们考虑下述做法:

    我们在建立最小生成树的过程就是利用并查集将两个连通块连通的过程,因为树上两个点之间的路径是唯一的,所以连通两个连通块后有且只有这两个连通块之间的点连通了但不对连通块内部造成影响。而且我们是按从大到小的顺序去枚举的边, 所以这条新连接的树边一定是这两个连通块之间两点路径的开心值。于是我们只用在维护并查集的同时维护一下并查集的大小,然后根据乘法原理就可以解决了。

代码

#include <bits/stdc++.h>
using namespace std; const int MAX = ;
int Father[MAX], size[MAX]; inline int Get_Father(int x)
{
return Father[x] == x ? x : Father[x] = Get_Father(Father[x]);
} struct Edge
{
int from, to, w;
}edge[MAX]; int a[MAX]; bool comp(const Edge & a, const Edge & b)
{
return a.w > b.w;
} int main()
{
// freopen("zoo.in", "r", stdin);
// freopen("zoo.out", "w", stdout);
int n, m;
int x, y;
scanf("%d%d", &n, &m);
//printf("%d %d", n, m);
for(register int i = ; i <= n; ++ i) scanf("%d", &a[i]), Father[i] = i, size[i] = ;
for(register int i = ; i <= m; ++ i)
{
scanf("%d%d", &x, &y);
edge[i].from = x, edge[i].to = y, edge[i].w = min(a[x], a[y]);
}
sort(edge + , edge + m+, comp);
int tot = ; long long ans = ;
for(register int i = ; i <= m; ++ i)
{
if(tot == n - ) break;
x = Get_Father(edge[i].from), y = Get_Father(edge[i].to);
if(x == y) continue;
ans = ans +(long long) size[x] * size[y] * edge[i].w;
size[x] += size[y];
Father[y] = x;
tot ++;
}
printf("%lld\n", ans << );
return ;
}

The Child and Zoo 题解的更多相关文章

  1. Codeforces Round #250 (Div. 1) B. The Child and Zoo 并查集

    B. The Child and Zoo Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/438/ ...

  2. cf437D The Child and Zoo

    D. The Child and Zoo time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  3. Codeforces 437 D. The Child and Zoo 并查集

    题目链接:D. The Child and Zoo 题意: 题意比较难懂,是指给出n个点并给出这些点的权值,再给出m条边.每条边的权值为该条路连接的两个区中权值较小的一个.如果两个区没有直接连接,那么 ...

  4. CF437D(The Child and Zoo)最小生成树

    题目: D. The Child and Zoo time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  5. Codeforces 437D The Child and Zoo(贪心+并查集)

    题目链接:Codeforces 437D The Child and Zoo 题目大意:小孩子去參观动物园,动物园分非常多个区,每一个区有若干种动物,拥有的动物种数作为该区的权值.然后有m条路,每条路 ...

  6. Codeforces 437D The Child and Zoo - 树分治 - 贪心 - 并查集 - 最大生成树

    Of course our child likes walking in a zoo. The zoo has n areas, that are numbered from 1 to n. The ...

  7. Codeforces D - The Child and Zoo

    D - The Child and Zoo 思路: 并查集+贪心 每条边的权值可以用min(a[u],a[v])来表示,然后按边的权值从大到小排序 然后用并查集从大的边开始合并,因为你要合并的这两个联 ...

  8. Codeforces Round #250 (Div. 2) D. The Child and Zoo 并查集

    D. The Child and Zoo time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  9. Codeforces 437D The Child and Zoo(并查集)

    Codeforces 437D The Child and Zoo 题目大意: 有一张连通图,每个点有对应的值.定义从p点走向q点的其中一条路径的花费为途径点的最小值.定义f(p,q)为从点p走向点q ...

随机推荐

  1. http statusCode(状态码) 200、300、400、500序列详解

    201-206都表示服务器成功处理了请求的状态代码,说明网页可以正常访问.200(成功) 服务器已成功处理了请求.通常,这表示服务器提供了请求的网页.201(已创建) 请求成功且服务器已创建了新的资源 ...

  2. Ant利用第三方的task

    转自 http://blog.sina.com.cn/s/blog_3d21e545010006s9.html 一.如何使用第三方任务   Ant可以使用第三方任务,在使用第三方任务之前,需告知Ant ...

  3. JavaScript函数和数组总结

    JavaScript函数 1.      函数的定义 函数名称只能包含字母.数字.下划线或$,且不能以数字开头.定义时可用函数定义表达式或者函数声明语句. var f = function fact( ...

  4. Oracle服务器重命名

    转载自:http://www.codesec.net/view/120387.html 因工作需要准备了一台服务器专门按照oracle数据库,并且服务器上安装了windows 2008R2操作系统,在 ...

  5. 转帖:kindeditor编辑区空格被隐藏,导致所见所得不一致的解决办法

    1.修改kindereditor-all.js中的 var re = /(\s)<(/)?([\w-:]+)((?:\s+|(?:\s+[\w-:]+)|(?:\s+[\w-:]+=[^\s&q ...

  6. python 将excel转换成字典,并且将字典写到txt文件里

    # -*- coding: utf-8 -*- #python2.7 import sys reload(sys) sys.setdefaultencoding('utf-8') from pyexc ...

  7. bzoj 4543: [POI2014]Hotel加强版

    Description 给出一棵树求三元组 \((x,y,z)\,,x<y<z\) 满足三个点两两之间距离相等,求三元组的数量 Solution 考虑暴力 \(DP\) 设 \(f[i][ ...

  8. 初学Hadoop之计算TF-IDF值

    1.词频 TF(term frequency)词频,就是该分词在该文档中出现的频率,算法是:(该分词在该文档出现的次数)/(该文档分词的总数),这个值越大表示这个词越重要,即权重就越大. 例如:一篇文 ...

  9. 面试基础(二)-mem函数

    常考的函数有下面三个,memset,memcpy,memmove,一定要记住三个函数的函数原型,熟记返回值类型和参数类型,当然也不能忘记参数检查   memset #include<iostre ...

  10. PAT 1037 Magic Coupon

    #include <cstdio> #include <cstdlib> #include <vector> #include <algorithm> ...