118-不同的子序列

给出字符串S和字符串T,计算S的不同的子序列中T出现的个数。

子序列字符串是原始字符串通过删除一些(或零个)产生的一个新的字符串,并且对剩下的字符的相对位置没有影响。(比如,“ACE”是“ABCDE”的子序列字符串,而“AEC”不是)。

样例

给出S = "rabbbit", T = "rabbit"

返回 3

挑战

Do it in O(n2) time and O(n) memory.

O(n2) memory is also acceptable if you do not know how to optimize memory.

标签

字符串处理 动态规划

思路

使用动态规划,首先考虑辅助空间为 O(n^2) 的情况,使用二维数组 dp[i][j] 表示 S[0...i] 中 T[0...j] 出现的个数

动态转移方程为:

dp[i][j] = dp[i-1][j-1] + dp[i-1][j] (S[i]==T[j])

dp[i][j] = dp[i-1][j] (S[i]!=T[j])

过程如下:



过程中发现,新的取值仅仅和其左上和上部元素有关,所以可以用一维数组 dp[i] 代替二维数组

code

class Solution {
public:
/**
* @param S, T: Two string.
* @return: Count the number of distinct subsequences
*/
int numDistinct(string &S, string &T) {
// write your code here
int sizeS = S.size(), sizeT = T.size(), i = 0, j = 0;
if(sizeS <= 0 || sizeT <= 0) {
return 1;
} vector<int> dp(sizeT+1, 0);
dp[0] = 1; for(i=1; i<=sizeS; i++) {
for(j=sizeT; j>0; j--) {
if(S[i-1] == T[j-1]) {
dp[j] += dp[j-1];
}
}
}
return dp[sizeT];
}
};

lintcode-118-不同的子序列的更多相关文章

  1. lintcode:最长公共子序列

    题目 最长公共子序列 给出两个字符串,找到最长公共子序列(LCS),返回LCS的长度. 样例 给出"ABCD" 和 "EDCA",这个LCS是 "A& ...

  2. lintcode:最长上升子序列

    题目 最长上升子序列 给定一个整数序列,找到最长上升子序列(LIS),返回LIS的长度. 样例 给出[5,4,1,2,3],这个LIS是[1,2,3],返回 3 给出[4,2,4,5,3,7],这个L ...

  3. lintcode 最长上升连续子序列 II(二维最长上升连续序列)

    题目链接:http://www.lintcode.com/zh-cn/problem/longest-increasing-continuous-subsequence-ii/ 最长上升连续子序列 I ...

  4. C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解

    版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...

  5. LintCode 77: 最长公共子序列

    public class Solution { /** * @param A, B: Two string. * @return: the length of the longest common s ...

  6. [LintCode] Longest Increasing Subsequence 最长递增子序列

    Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...

  7. [LintCode] Longest Increasing Continuous Subsequence 最长连续递增子序列

    Give an integer array,find the longest increasing continuous subsequence in this array. An increasin ...

  8. lintcode 中等题 :Maximum Product Subarray 最大连续乘积子序列

    题目 乘积最大子序列 找出一个序列中乘积最大的连续子序列(至少包含一个数). 样例 比如, 序列 [2,3,-2,4] 中乘积最大的子序列为 [2,3] ,其乘积为6. 解题  法一:直接暴力求解 时 ...

  9. lintcode :最长上升连续子序列

    题目: 最长上升连续子序列 给定一个整数数组(下标从 0 到 n-1, n 表示整个数组的规模),请找出该数组中的最长上升连续子序列.(最长上升连续子序列可以定义为从右到左或从左到右的序列.) 样例 ...

  10. lintcode 77.Longest Common Subsequence(最长公共子序列)、79. Longest Common Substring(最长公共子串)

    Longest Common Subsequence最长公共子序列: 每个dp位置表示的是第i.j个字母的最长公共子序列 class Solution { public: int findLength ...

随机推荐

  1. ES6 async await

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. OI 刷题记录——每周更新

    每周日更新 2016.05.29 UVa中国麻将(Chinese Mahjong,Uva 11210) UVa新汉诺塔问题(A Different Task,Uva 10795) NOIP2012同余 ...

  3. c++:请编写一个函数,对字符串“zheshigekendiedetimu”按从大到小的顺序排列,并截取后n位数(n为函数的一个参数)。

    String str="zheshigekendiedetimu"; StringBuffer buff=new StringBuffer(str); char[] arr=str ...

  4. JDBC配置文件db.properties(Mysql) 及dbutils的编写

    #数据库驱动driver=com.mysql.jdbc.Driver#数据库连接url=jdb:mysql://localhost:3306/newdb3?useUnicode=true&ch ...

  5. ODBC error in PHP: “No tuples available at this result index”

    ODBC error in PHP: “No tuples available at this result index” 在执行存储过程的时候发生如题的错误,在stackoverflow上找到了相同 ...

  6. 12.2.1 访问元素的样式【JavaScript高级程序设计第三版】

    任何支持style 特性的HTML 元素在JavaScript 中都有一个对应的style 属性.这个style 对象是CSSStyleDeclaration 的实例,包含着通过HTML 的style ...

  7. python学习之对象的三大特性

    在面向对象程序设计中,对象可以看做是数据(特性)以及由一系列可以存取.操作这些数据的方法所组成的集合.编写代码时,我们可以将所有功能都写在一个文件里,这样也是可行的,但是这样不利于代码的维护,你总不希 ...

  8. python2.7入门---面向对象

        Python从设计之初就已经是一门面向对象的语言,正因为如此,在Python中创建一个类和对象是很容易的.所以,这篇文章我们来记录下Python的面向对象编程.如果你以前没有接触过面向对象的编 ...

  9. xss挑战赛小记 0x02(prompt(1))

    0x0O 上次搜xss挑战赛的时候 还找到了一个看上去难度更高的挑战赛 今天做了一下 学到了很多新东西 这个挑战赛能够在页面成功prompt(1)就算过关了 挑战地址 http://prompt.ml ...

  10. EAS集锦

    前言 之前看过的相关BOS开发文档,整理了一些常用的API,一直没有来得及放上来,现在把整理的文件放上来,以备忘查看,分享.闲话少说,上干货! ps 图片不方便查看的话,可以拖住图片,加载到浏览器新页 ...