了解机器学习框架CoreML
CoreML是iOS 11新推出的机器学习框架,是人工智能的核心内容,他可以在训练好的机器学习模型应用到APP中

所谓已训练模型 (trained model)指的是对一组训练数据应用了某个机器学习算法后,所生成的一组结果Core ML 是领域特定 (domain-specific) 框架和功能的基础所在。Core ML 为 Vision 提供了图像处理的支持,为 Foundation 提供了自然语言处理的支持(例如 NSLinguisticTagger 类),为 GameplayKit 提供了对学习决策树 (learned decision tree) 进行分析的支持。Core ML 本身是基于底层基本类型而建立的,包括 Accelerate、BNNS 以及 Metal Performance Shaders 等。
获取模型
Core ML 支持多种机器学习模型,其中包括了神经网络 (Neural Network)、组合树 (Tree Ensemble)、支持向量机 (Support Vector Machine) 以及广义线性模型 (Generalized Linear Model)。Core ML 的运行需要使用 Core ML 模型格式(也就是以 .mlmodel 扩展名结尾的模型)。
Apple 提供了一些常见的开源模型供大家使用,这些模型已经使用了 Core ML 模型格式。您可以自行下载这些模型,然后就可以开始在应用中使用它们了。
工程实例
首先因为CoreML和Vision都是iOS 11才有的功能,你要确保Xcode9和iOS 11的设备,当然模拟器也可以。开发语言使用Swift4
将模型添加到Xcode中
创建工程并引入模型文件

单击这个文件就可以看到这个模型的详细信息

下面是这个模型的官方介绍Detects the dominant objects present in an image from a set of 1000 categories such as trees, animals, food, vehicles, people, and more.大意为可以从1000个类别中筛选传树木、动物、食品、汽车、人等等。
模型解读
inputs中写了需要一个image 大小299*299;outputs里会有两个参数classLabelProbs和classLabel
,classLabelProbs是一个[string:Double]的字典数组,数组里每一个字典就是这个输入图片分析得出可能的一个结果string就是对图片类型的描述,而double就是可能性百分比。另一个classLabel就是最有可能的一个一个结果描述Model Class下面有这个类文件点进去可以看到如下三个类
input输入源,可以看到它需要一个CVPixelBuffer格式的图片作为输入

output可以看到输出的两个参数classLabel和classLabelProbs正式我们上面有介绍过的所有可能的结果数组与最有可能的结果描述

inceptionv3调用这个类的Prediction方法来开始进行分析

编写代码
定义一个imageView,一个Label,一个button
点击按钮打开相册选取图片,选取完成执行下面的方法,然后再label显示分析结果
func process(_ image: UIImage) {
imageView.image = image
// 需要CVPixelBuffer格式的输入源
guard let pixelBuffer = image.pixelBuffer(width: 299, height: 299) else {
return
}
//I have `Use of unresolved identifier 'Inceptionv3'` error here when I use New Build System (File > Project Settings) ¯\_(ツ)_/¯
let model = Inceptionv3()
do {
// 调用model的prediction方法进行分析
let output = try model.prediction(image: pixelBuffer)
// 打印输出结果
let probs = output.classLabelProbs.sorted { $0.value > $1.value }
if let prob = probs.first {
Label.text = "\(prob.key) \(prob.value)"
}
}
catch {
self.presentAlertController(withTitle: title,
message: error.localizedDescription)
}
}
运行效果


了解机器学习框架CoreML
注:本文著作权归作者,由demo大师代发,拒绝转载,转载需要作者授权
了解机器学习框架CoreML的更多相关文章
- [Xcode 实际操作]七、文件与数据-(20)CoreML机器学习框架:检测和识别图片中的物体
目录:[Swift]Xcode实际操作 本文将演示机器学习框架的使用,实现对图片中物体的检测和识别. 首先访问苹果开发者网站关于机器学习的网址: https://developer.apple.com ...
- 一个开源的,跨平台的.NET机器学习框架ML.NET
微软在Build 2018大会上推出的一款面向.NET开发人员的开源,跨平台机器学习框架ML.NET. ML.NET将允许.NET开发人员开发他们自己的模型,并将自定义ML集成到他们的应用程序中,而无 ...
- 基于Docker的TensorFlow机器学习框架搭建和实例源码解读
概述:基于Docker的TensorFlow机器学习框架搭建和实例源码解读,TensorFlow作为最火热的机器学习框架之一,Docker是的容器,可以很好的结合起来,为机器学习或者科研人员提供便捷的 ...
- 开源的,跨平台的.NET机器学习框架ML.NET
微软在Build 2018大会上推出的一款面向.NET开发人员的开源,跨平台机器学习框架ML.NET. ML.NET将允许.NET开发人员开发他们自己的模型,并将自定义ML集成到他们的应用程序中,而无 ...
- [转] - Weiflow——微博机器学习框架
Weiflow--微博机器学习框架 本文从开发效率(易用性).可扩展性.执行效率三个方面,介绍了微博机器学习框架Weiflow在微博的应用和最佳实践. 在上期<基于Spark的大规模机器学习在微 ...
- Python开源机器学习框架:Scikit-learn六大功能,安装和运行Scikit-learn
Python开源机器学习框架:Scikit-learn入门指南. Scikit-learn的六大功能 Scikit-learn的基本功能主要被分为六大部分:分类,回归,聚类,数据降维,模型选择和数据预 ...
- TensorFlow机器学习框架-学习笔记-001
# TensorFlow机器学习框架-学习笔记-001 ### 测试TensorFlow环境是否安装完成-----------------------------```import tensorflo ...
- 使用Java语言开发机器学习框架和参数服务器
https://github.com/wudikua/ps 本项目是我自己动手实现的机器学习训练框架,代码简单,有很多不完善,但是也保留了最小可用功能 通过自己编写这个项目,可以帮助自己入门机器学习 ...
- 机器学习框架ML.NET学习笔记【4】多元分类之手写数字识别
一.问题与解决方案 通过多元分类算法进行手写数字识别,手写数字的图片分辨率为8*8的灰度图片.已经预先进行过处理,读取了各像素点的灰度值,并进行了标记. 其中第0列是序号(不参与运算).1-64列是像 ...
随机推荐
- zabbix通过snmp监控vmware vpshere5.5
https://www.iyunv.com/thread-516343-1-1.html
- (8)python 类和对象
一.类和对象 python可以动态的添加删除变量和方法 类中的方法至少要有一个参数,第一个参数会被绑定到类的实例上,通常命名为self 1.构造函数 类中的构造方法名为 __init__(self,. ...
- Maven学习笔记1
Maven是什么? 百度百科:Maven项目对象模型(POM),可以通过一小段描述信息来管理项目的构建,报告和文档的软件项目管理工具. 这些描述总是让人更加难理解Maven,扔掉它,咱们先看看Mave ...
- 模板—数学—Lucas
模板—数学—Lucas Code: #include <cstdio> #include <algorithm> using namespace std; #define N ...
- HDU 2256 Problem of Precision (矩阵快速幂)(推算)
Problem of Precision Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- 微服务之SpringCloud实战(一):SpringCloud简介
什么是微服务架构 微服务架构就是系统架构设计的一种风格,它主旨将一个独立的系统,拆分成各个微服务,各个微服务独立运行,他们之间通过Http的Restful API进行通信,拆分出来的微服务是根据原系统 ...
- [OpenJudge8462][序列DP]大盗阿福
大盗阿福 总时间限制: 1000ms 内存限制: 65536kB [描述] 阿福是一名经验丰富的大盗.趁着月黑风高,阿福打算今晚洗劫一条街上的店铺. 这条街上一共有 N 家店铺,每家店中都有一些现金. ...
- Spring的Aop 注解配置
1,导包 2,准备目标对象 package com.songyan.anno; public interface UserService { void save(); void delete(); v ...
- Maven多模块项目单独编译子模块项目时报错:Failed to execute goal on project/Could not resolve dependencies for project
背景:常规的父子项目搭建的工程,参考:http://www.cnblogs.com/EasonJim/p/6863987.html 解决方法: 1.需要把parent工程,也就是package是pom ...
- docker 实现redis集群搭建
摘要:接触docker以来,似乎养成了一种习惯,安装什么应用软件都想往docker方向做,今天就想来尝试下使用docker搭建redis集群. 首先,我们需要理论知识:Redis Cluster是Re ...