LCA【SP913】Qtree - Query on a tree II
Description
给定一棵n个点的树,边具有边权。要求作以下操作:
DIST a b 询问点a至点b路径上的边权之和
KTH a b k 询问点a至点b有向路径上的第k个点的编号
有多组测试数据,每组数据以DONE结尾。
Input
第一组数据包含一个整数\(T\),代表有\(T\)组测试数据。\(1\leq T \leq 25\)
对每一组测试数据:
- 第一行一个整数\(N(n \leq 10000)\)
- 接下来有\(N-1\)行,每一行描述树上的一条边\(a,b,c( c\leq 100000)\)
- 接下来几行操作包括\(DIST \ a \ b\),\(KTH \ a \ b \ k\)
- 以\(DONE\)结尾
Output
对于每一个\(DIST\)和\(KTH\)询问输出一行.
很明显,LCA,但是难点就在于如何求出\(KTH\)对于的答案.
首先会存在两种情况
一. \(k \leq depth[x]-depth[lca_{x,y}]+1\)
很明显,这时第\(k\)个点必然在于\(x->lca_{x,y}\)的路径上,我们只需要知道其深度即可倍增求取.
可求其深度为\(depth[x]-k+1\)
二. \(k > depth[x]-depth[lca_{x,y}]+1\)
这时,第\(k\)个点必然存在于\(y->lca_{x,y}\)的路径上,但是如何求其深度却是一个问题.
先设\(ans\)为第\(k\)个点的深度.
我们可以得到的信息是\(k\)必须要在\(y->lca_{x,y}\),
所以新的深度至少必须为\(k-(depth[x]-depth[lca_{x,y}]+1)\)
但是由于我们的\(lca_{x,y}\)不一定为\(1\)(这里我以\(1\)为根)
所以原式子还需要加上一个\(depth[lca_{x,y}]\)。
因此可以得到这样一个式子
\]
知道深度之后,直接倍增跳即可.
代码
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
#define clear(a) memset(a,0,sizeof a)
#define N 10008
#define R register
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int T;
int n,head[N],tot;
struct cod{int u,v,w;}edge[N<<2];
inline void add(int x,int y,int z)
{
edge[++tot].u=head[x];
edge[tot].v=y;
edge[tot].w=z;
head[x]=tot;
}
int depth[N],f[N][21],dis[N];
void dfs(int u,int fa,int dist)
{
f[u][0]=fa;dis[u]=dis[fa]+dist;depth[u]=depth[fa]+1;
for(R int i=1;(1<<i)<=depth[u];i++)
f[u][i]=f[f[u][i-1]][i-1];
for(R int i=head[u];i;i=edge[i].u)
{
if(edge[i].v==fa)continue;
dfs(edge[i].v,u,edge[i].w);
}
}
inline int lca(int x,int y)
{
if(depth[x]>depth[y])swap(x,y);
for(R int i=17;i>=0;i--)
if(depth[x]+(1<<i)<=depth[y])
y=f[y][i];
if(x==y)return y;
for(R int i=17;i>=0;i--)
{
if(f[x][i]==f[y][i])continue;
x=f[x][i],y=f[y][i];
}
return f[x][0];
}
char s[108];
inline int query(int x,int y,int k)
{
R int la=lca(x,y);
if(depth[x]-depth[la]+1>=k)
{
R int ans=depth[x]-k+1;
for(R int i=17;i>=0;i--)
{
if(depth[x]-ans>=(1<<i))
x=f[x][i];
}
return x;
}
else
{
R int ans=depth[la]*2+k-depth[x]-1;
for(R int i=17;i>=0;i--)
if((1<<i)<=depth[y]-ans)
y=f[y][i];
return y;
}
}
int main()
{
in(T);
for(;T;T--)
{
in(n);
tot=0;clear(head),clear(dis),clear(f);clear(depth);
for(R int i=1,x,y,z;i<n;i++)
{
in(x),in(y),in(z);
add(x,y,z);add(y,x,z);
}
dfs(1,0,0);
for(R int x,y,la,k;;)
{
scanf("%s",s+1);
if(s[2]=='O')break;
if(s[2]=='I')
{
in(x),in(y);
la=lca(x,y);
printf("%d\n",dis[x]+dis[y]-2*dis[la]);
}
else
{
in(x),in(y),in(k);
printf("%d\n",query(x,y,k));
}
}
}
}
LCA【SP913】Qtree - Query on a tree II的更多相关文章
- 【BZOJ1803】Spoj1487 Query on a tree III 主席树+DFS序
[BZOJ1803]Spoj1487 Query on a tree III Description You are given a node-labeled rooted tree with n n ...
- 【BZOJ2589】[SPOJ10707]Count on a tree II
[BZOJ2589][SPOJ10707]Count on a tree II 题面 bzoj 题解 这题如果不强制在线就是一个很\(sb\)的莫队了,但是它强制在线啊\(qaq\) 所以我们就用到了 ...
- 【SPOJ10707】 COT2 Count on a tree II
SPOJ10707 COT2 Count on a tree II Solution 我会强制在线版本! Solution戳这里 代码实现 #include<stdio.h> #inclu ...
- 【SPOJ QTREE2】QTREE2 - Query on a tree II(LCA)
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...
- 【SPOJ】375. Query on a tree(树链剖分)
http://www.spoj.com/problems/QTREE/ 这是按边分类的. 调试调到吐,对拍都查不出来,后来改了下造数据的,拍出来了.囧啊啊啊啊啊啊 时间都花在调试上了,打hld只用了半 ...
- 树链剖分【p4116】Qtree3 - Query on a tree
Description 给出N个点的一棵树(N-1条边),节点有白有黑,初始全为白 有两种操作: 0 i : 改变某点的颜色(原来是黑的变白,原来是白的变黑) 1 v : 询问1到v的路径上的第一个黑 ...
- 【bzoj1803】Spoj1487 Query on a tree III DFS序+主席树
题目描述 You are given a node-labeled rooted tree with n nodes. Define the query (x, k): Find the node w ...
- 【SPOJ10707】COT2 - Count on a tree II
题目大意:给定一棵 N 个节点的无根树,每个节点有一个颜色.现有 M 个询问,每次询问一条树链上的不同颜色数. 题解:学会了树上莫队. 树上莫队是将节点按照欧拉序进行排序,将树上问题转化成序列上的问题 ...
- 【树上莫队】【SP10707】 COT2 - Count on a tree II
Description 给定一棵 \(n\) 个点的树,每个节点有一个权值,\(m\) 次询问,每次查询两点间路径上有多少不同的权值 Input 第一行是 \(n\) 和 \(m\) 第二行是 \(n ...
随机推荐
- POJ3294 Life Forms 【后缀数组】
生命形式 时间限制: 5000MS 内存限制: 65536K 提交总数: 16660 接受: 4910 描述 你可能想知道为什么大多数外星人的生命形式与人类相似,不同的是表面特征,如身高,肤色 ...
- 【BZOJ 2006】[NOI2010]超级钢琴 ST
我们先把所有最左端对应的最优右端入堆,eg: z 在[l,r](由题目给出的L,R决定)之间的最优解 y,然后出堆以后,再入堆z,y-1,z,y+1,那么我们只需要用st找最大前缀和就好了(ST是一 ...
- 用npm安装express时报proxy的错误的解决方法
首先要说明一点:当使用npm install <module-name>时安装组件时,安装的目录是cmd的目录+node_modules+组件名 例子如下:假如你现在安装express这个 ...
- java程序在centos7里面开机自启动
1.我们先来个简单的start,status,stop程序: [root@localhost ~]# cat /home/tomcat/jarservice.sh #!/bin/bashCU_PID= ...
- IDEA 使用maven创建web项目,打包war时不会创建class文件
使用maven创建项目后我有创建了个src的目录,导致maven编译不能识别我创建的src文件下的Java文件 修改这样后就可以识别编译Java文件 今天又给自己挖了个坑.......
- NodeJS概述
NodeJS中文API 一.概述 Node.js 是一种建立在Google Chrome’s v8 engine上的 non-blocking (非阻塞), event-driven (基于事件的) ...
- Django【进阶】FBV 和 CBV
django中请求处理方式有2种:FBV 和 CBV 一.FBV FBV(function base views) 就是在视图里使用函数处理请求. 看代码: urls.py 1 2 3 4 5 6 7 ...
- spring 声明式事务中try catch捕获异常
原文:http://heroliuxun.iteye.com/blog/848122 今天遇到了一个这个问题 最近遇到这样的问题,使用spring时,在业务层需要捕获异常(特殊需要),当前一般情况下不 ...
- javascript的有效校验
//年月日期有效性检验 function yearAndMonthCheck() { var flag = true; var currentyear = new Date().getFullYear ...
- [ kvm ] 进程的处理器亲和性和vCPU的绑定
cpu调用进程或线程的方式: Linux内核的进程调度器根据自有的调度策略将系统中的一个进程调度到某个CPU上执行.一个进程在前一个执行时间是在cpuM上运行,而在后一个执行时间则是在cpuN上运行, ...