LCA【SP913】Qtree - Query on a tree II
Description
给定一棵n个点的树,边具有边权。要求作以下操作:
DIST a b 询问点a至点b路径上的边权之和
KTH a b k 询问点a至点b有向路径上的第k个点的编号
有多组测试数据,每组数据以DONE结尾。
Input
第一组数据包含一个整数\(T\),代表有\(T\)组测试数据。\(1\leq T \leq 25\)
对每一组测试数据:
- 第一行一个整数\(N(n \leq 10000)\)
- 接下来有\(N-1\)行,每一行描述树上的一条边\(a,b,c( c\leq 100000)\)
- 接下来几行操作包括\(DIST \ a \ b\),\(KTH \ a \ b \ k\)
- 以\(DONE\)结尾
Output
对于每一个\(DIST\)和\(KTH\)询问输出一行.
很明显,LCA,但是难点就在于如何求出\(KTH\)对于的答案.
首先会存在两种情况
一. \(k \leq depth[x]-depth[lca_{x,y}]+1\)
很明显,这时第\(k\)个点必然在于\(x->lca_{x,y}\)的路径上,我们只需要知道其深度即可倍增求取.
可求其深度为\(depth[x]-k+1\)
二. \(k > depth[x]-depth[lca_{x,y}]+1\)
这时,第\(k\)个点必然存在于\(y->lca_{x,y}\)的路径上,但是如何求其深度却是一个问题.
先设\(ans\)为第\(k\)个点的深度.
我们可以得到的信息是\(k\)必须要在\(y->lca_{x,y}\),
所以新的深度至少必须为\(k-(depth[x]-depth[lca_{x,y}]+1)\)
但是由于我们的\(lca_{x,y}\)不一定为\(1\)(这里我以\(1\)为根)
所以原式子还需要加上一个\(depth[lca_{x,y}]\)。
因此可以得到这样一个式子
\]
知道深度之后,直接倍增跳即可.
代码
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
#define clear(a) memset(a,0,sizeof a)
#define N 10008
#define R register
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int T;
int n,head[N],tot;
struct cod{int u,v,w;}edge[N<<2];
inline void add(int x,int y,int z)
{
edge[++tot].u=head[x];
edge[tot].v=y;
edge[tot].w=z;
head[x]=tot;
}
int depth[N],f[N][21],dis[N];
void dfs(int u,int fa,int dist)
{
f[u][0]=fa;dis[u]=dis[fa]+dist;depth[u]=depth[fa]+1;
for(R int i=1;(1<<i)<=depth[u];i++)
f[u][i]=f[f[u][i-1]][i-1];
for(R int i=head[u];i;i=edge[i].u)
{
if(edge[i].v==fa)continue;
dfs(edge[i].v,u,edge[i].w);
}
}
inline int lca(int x,int y)
{
if(depth[x]>depth[y])swap(x,y);
for(R int i=17;i>=0;i--)
if(depth[x]+(1<<i)<=depth[y])
y=f[y][i];
if(x==y)return y;
for(R int i=17;i>=0;i--)
{
if(f[x][i]==f[y][i])continue;
x=f[x][i],y=f[y][i];
}
return f[x][0];
}
char s[108];
inline int query(int x,int y,int k)
{
R int la=lca(x,y);
if(depth[x]-depth[la]+1>=k)
{
R int ans=depth[x]-k+1;
for(R int i=17;i>=0;i--)
{
if(depth[x]-ans>=(1<<i))
x=f[x][i];
}
return x;
}
else
{
R int ans=depth[la]*2+k-depth[x]-1;
for(R int i=17;i>=0;i--)
if((1<<i)<=depth[y]-ans)
y=f[y][i];
return y;
}
}
int main()
{
in(T);
for(;T;T--)
{
in(n);
tot=0;clear(head),clear(dis),clear(f);clear(depth);
for(R int i=1,x,y,z;i<n;i++)
{
in(x),in(y),in(z);
add(x,y,z);add(y,x,z);
}
dfs(1,0,0);
for(R int x,y,la,k;;)
{
scanf("%s",s+1);
if(s[2]=='O')break;
if(s[2]=='I')
{
in(x),in(y);
la=lca(x,y);
printf("%d\n",dis[x]+dis[y]-2*dis[la]);
}
else
{
in(x),in(y),in(k);
printf("%d\n",query(x,y,k));
}
}
}
}
LCA【SP913】Qtree - Query on a tree II的更多相关文章
- 【BZOJ1803】Spoj1487 Query on a tree III 主席树+DFS序
[BZOJ1803]Spoj1487 Query on a tree III Description You are given a node-labeled rooted tree with n n ...
- 【BZOJ2589】[SPOJ10707]Count on a tree II
[BZOJ2589][SPOJ10707]Count on a tree II 题面 bzoj 题解 这题如果不强制在线就是一个很\(sb\)的莫队了,但是它强制在线啊\(qaq\) 所以我们就用到了 ...
- 【SPOJ10707】 COT2 Count on a tree II
SPOJ10707 COT2 Count on a tree II Solution 我会强制在线版本! Solution戳这里 代码实现 #include<stdio.h> #inclu ...
- 【SPOJ QTREE2】QTREE2 - Query on a tree II(LCA)
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...
- 【SPOJ】375. Query on a tree(树链剖分)
http://www.spoj.com/problems/QTREE/ 这是按边分类的. 调试调到吐,对拍都查不出来,后来改了下造数据的,拍出来了.囧啊啊啊啊啊啊 时间都花在调试上了,打hld只用了半 ...
- 树链剖分【p4116】Qtree3 - Query on a tree
Description 给出N个点的一棵树(N-1条边),节点有白有黑,初始全为白 有两种操作: 0 i : 改变某点的颜色(原来是黑的变白,原来是白的变黑) 1 v : 询问1到v的路径上的第一个黑 ...
- 【bzoj1803】Spoj1487 Query on a tree III DFS序+主席树
题目描述 You are given a node-labeled rooted tree with n nodes. Define the query (x, k): Find the node w ...
- 【SPOJ10707】COT2 - Count on a tree II
题目大意:给定一棵 N 个节点的无根树,每个节点有一个颜色.现有 M 个询问,每次询问一条树链上的不同颜色数. 题解:学会了树上莫队. 树上莫队是将节点按照欧拉序进行排序,将树上问题转化成序列上的问题 ...
- 【树上莫队】【SP10707】 COT2 - Count on a tree II
Description 给定一棵 \(n\) 个点的树,每个节点有一个权值,\(m\) 次询问,每次查询两点间路径上有多少不同的权值 Input 第一行是 \(n\) 和 \(m\) 第二行是 \(n ...
随机推荐
- 【bzoj2038】[国家集训队2010]小Z的袜子 莫队
莫队:就是一坨软软的有弹性的东西Duang~Duang~Duang~ 为了防止以左端点为第一关键字以右端点为第二关键字使右端点弹来弹去,所以让左端点所在块为关键字得到O(n1.5)的时间效率,至于分块 ...
- tengine的安装
tengine的安装参考此博文: http://www.cnblogs.com/zlslch/p/6035145.html (1)下载tengine的压缩包 (2)解压缩 (3)进入目录./confi ...
- HTML5之SVG详解(一):基本概括
转载自:http://www.cnblogs.com/hupeng/archive/2012/12/21/2828456.html 1.背景 SVG是Scalable Vector Graphics的 ...
- 二进制转16进制JAVA代码
public class Binary2Hex { public static void main(String[] args) { String bString ="10101000&qu ...
- Spring学习--用 ASpectJ 注解实现 AOP
用 AspectJ 注解声明切面: 要在 Spring 中声明 AspectJ 切面 , 只需要在 IOC 容器中将切面声明为 bean 实例.当在 Spring IOC 容器中初始化 AsjectJ ...
- spring结合Mybatis的框架搭建(一)
一:前沿 2015年新年上班的第二天,第一天就打了一天的酱油哦,只是下午开始搭建自己毕业设计的框架,搭建的是spring+spring mvc+MyBatis的框架.今天遇到了一个问题,结果弄了我一天 ...
- mysql 基本操作练习
), sex ), age )); , '北京'); , '上海'); , '广州'); , '北京'); , '北京'); , '上海'); , '北京'); #(). 写出sql语句,查询所有年龄 ...
- [BZOJ1036][ZJOI2008]树的统计Count 解题报告|树链剖分
树链剖分 简单来说就是数据结构在树上的应用.常用的为线段树splay等.(可现在splay还不会敲囧) 重链剖分: 将树上的边分成轻链和重链. 重边为每个节点到它子树最大的儿子的边,其余为轻边. 设( ...
- LeetCode 5:Given an input string, reverse the string word by word.
problem: Given an input string, reverse the string word by word. For example: Given s = "the sk ...
- go开发
我开发中一直用这一段 //for debuggingfunc printPretty(v interface{}, mark string) (err error) { fmt.Printf(&quo ...