/** A section of an input file. Returned by {@link
* InputFormat#getSplits(JobContext)} and passed to
* {@link InputFormat#createRecordReader(InputSplit,TaskAttemptContext)}.
*
* 文件的一部分,通过InputFormat#getSplits(JobContext)生成
* 作为参数生产RecordReader:InputFormat#createRecordReader(InputSplit,TaskAttemptContext)
* 实现了InputSplit接口
*/
@InterfaceAudience.Public
@InterfaceStability.Stable
public class FileSplit extends InputSplit implements Writable {
private Path file;
private long start;
private long length;
private String[] hosts;
private SplitLocationInfo[] hostInfos; public FileSplit() {} /** Constructs a split with host information
*
* @param file the file name。 文件名称
* @param start the position of the first byte in the file to process。第一个byte的偏移量
* @param length the number of bytes in the file to process。 split的长度
* @param hosts the list of hosts containing the block, possibly null。 split所在的主机列表
*/
public FileSplit(Path file, long start, long length, String[] hosts) {
this.file = file;
this.start = start;
this.length = length;
this.hosts = hosts;
} /** Constructs a split with host and cached-blocks information
*
* @param file the file name。 文件名称
* @param start the position of the first byte in the file to process。第一个byte的偏移量
* @param length the number of bytes in the file to process split的长度
* @param hosts the list of hosts containing the block split所在的主机列表
* @param inMemoryHosts the list of hosts containing the block in memory 在内存中保存block的机器列表
*/
public FileSplit(Path file, long start, long length, String[] hosts,
String[] inMemoryHosts) {
this(file, start, length, hosts);
hostInfos = new SplitLocationInfo[hosts.length];
for (int i = 0; i < hosts.length; i++) {
// because N will be tiny, scanning is probably faster than a HashSet
boolean inMemory = false;
for (String inMemoryHost : inMemoryHosts) {
if (inMemoryHost.equals(hosts[i])) {
inMemory = true;
break;
}
}
hostInfos[i] = new SplitLocationInfo(hosts[i], inMemory);
}
} /** The file containing this split's data. */
public Path getPath() { return file; } /** The position of the first byte in the file to process. */
public long getStart() { return start; } /** The number of bytes in the file to process. */
@Override
public long getLength() { return length; } @Override
public String toString() { return file + ":" + start + "+" + length; } ////////////////////////////////////////////
// Writable methods
//////////////////////////////////////////// @Override
public void write(DataOutput out) throws IOException {
Text.writeString(out, file.toString());
out.writeLong(start);
out.writeLong(length);
} @Override
public void readFields(DataInput in) throws IOException {
file = new Path(Text.readString(in));
start = in.readLong();
length = in.readLong();
hosts = null;
} @Override
public String[] getLocations() throws IOException {
if (this.hosts == null) {
return new String[]{};
} else {
return this.hosts;
}
} @Override
@Evolving
public SplitLocationInfo[] getLocationInfo() throws IOException {
return hostInfos;
}
}

hadoop FileSplit的更多相关文章

  1. 工作采坑札记:4. Hadoop获取InputSplit文件信息

    1. 场景 基于客户的数据处理需求,客户分发诸多小数据文件,文件每行代表一条记录信息,且每个文件以"类型_yyyyMMdd_批次号"命名.由于同一条记录可能存在于多个文件中,且处于 ...

  2. 报错org.apache.hadoop.mapreduce.lib.input.FileSplit cannot be cast to org.apache.hadoop.mapred.FileSplit

    报错 java.lang.Exception: java.lang.ClassCastException: org.apache.hadoop.mapreduce.lib.input.FileSpli ...

  3. Hadoop之倒排索引

    前言: 从IT跨度到DT,如今的数据每天都在海量的增长.面对如此巨大的数据,如何能让搜索引擎更好的工作呢?本文作为Hadoop系列的第二篇,将介绍分布式情况下搜索引擎的基础实现,即“倒排索引”. 1. ...

  4. hadoop分片分析

    上一篇分析了split的生成,现在接着来说具体的split具体内容及其相关的文件和类.以FileSplit(mapred包下org/apache/hadoop/mapreduce/lib/input/ ...

  5. hadoop输入分片计算(Map Task个数的确定)

    作业从JobClient端的submitJobInternal()方法提交作业的同时,调用InputFormat接口的getSplits()方法来创建split.默认是使用InputFormat的子类 ...

  6. Hadoop的数据输入的源码解析

    我们知道,任何一个工程项目,最重要的是三个部分:输入,中间处理,输出.今天我们来深入的了解一下我们熟知的Hadoop系统中,输入是如何输入的? 在hadoop中,输入数据都是通过对应的InputFor ...

  7. Hadoop日记Day12---MapReduce学习

    一.MapReduce简介 1.1MapReduce概述 MapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题.MR由两个阶段组成:Map和Reduce ...

  8. Hadoop日记Day18---MapReduce排序分组

    本节所用到的数据下载地址为:http://pan.baidu.com/s/1bnfELmZ MapReduce的排序分组任务与要求 我们知道排序分组是MapReduce中Mapper端的第四步,其中分 ...

  9. Hadoop官方文档翻译——MapReduce Tutorial

    MapReduce Tutorial(个人指导) Purpose(目的) Prerequisites(必备条件) Overview(综述) Inputs and Outputs(输入输出) MapRe ...

随机推荐

  1. Quartus ModelSim联合仿真中的RAM初始化

    Modelsim只支持Hex格式的初始化文件,文件需要放在仿真的根目录下,例如:.\simulation\modelsim:并且在利用Quartus宏生成IP时,选择的初始化文件必须用绝对路径!否则M ...

  2. uoj198【CTSC2016】时空旅行

    传送门:http://uoj.ac/problem/198 [题解] 首先y.z是没有用的.. 然后式子就是w = (x0-xi)^2+ci的最小值,化出来可以变成一个直线的形式. 然后我们可以用线段 ...

  3. POJ1258 (最小生成树prim)

    Agri-Net Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 46319   Accepted: 19052 Descri ...

  4. popen && pclose函数

    1. 函数操作: 创建一个管道,调用fork产生一个子进程,关闭管道的不使用端,执行一个shell以运行命令,然后等待命令终止: 2. 函数原型: #include <stdio.h> F ...

  5. 分享三个USB抓包软件---Bus Hound,USBlyzer 和-USBTrace【转】

    转自:http://bbs.armfly.com/read.php?tid=15377 Bus Hound官方下载地址:http://perisoft.net/bushound/ Bus Hound ...

  6. Linux实现利用SSH远程登录服务器详解

    Linux实现利用SSH远程登录服务器详解 http://www.111cn.net/sys/linux/55152.htm

  7. 如何修改linux 的SSH的默认端口号?

    http://blog.chinaunix.net/uid-7551698-id-1989086.html   在安装完毕linux,默认的情况下ssh是开放的,容易受到黑客攻击,简单,有效的操作之一 ...

  8. POI导入导出小案例

    一.HSSF 97-2003 需要jar:poi-3.9.jar 简单示例:生成EXCEL //93---2003 String [] titlie={"id","nam ...

  9. pyhton mechanize 学习笔记

    1:简单的使用 import mechanize # response = mechanize.urlopen("http://www.hao123.com/") request ...

  10. docker从零开始(二)容器初体验

    使用定义容器 Dockerfile Dockerfile定义容器内所需要的环境.对网络接口和磁盘驱动器等资源的访问在此环境中进行虚拟化,该环境与系统的其他部分隔离,因此您需要将端口映射到外部世界,并具 ...