I - 深搜 基础

Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n = 6, and the list is [4, 3, 2, 2, 1, 1], then there are four different sums that equal 4: 4, 3+1, 2+2, and 2+1+1. (A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input

The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x 1 , . . . , x n . If n = 0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12 (inclusive), and x 1 , . . . , x n will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.

Output

For each test case, first output a line containing `Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line `NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distinct; the same sum cannot appear twice.

Sample Input

4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output

Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25

题意比较好懂,解析见代码
代码:
/*
 hdu1258
dfs,小数据,dfs暴力搜一遍即可,之前一直做一些图的题目,这算是做的
第一道比较抽象的dfs题目,dfs最重要的思想是递归与回溯来实现状态的转移,是
一种暴力的搜索手段,适用于小数据的情况
*/
#include<iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
using namespace std;
const int maxn=15;
const double epi=1e-8;
const double pi=acos(-1.0);
int a[maxn],b[maxn];
bool v[maxn];//标记数组,避免在一次搜索中重复搜索
int tar,n;
bool flag;
void dfs(int sum,int pos,int ans)//三个参数,sum代表当前层计数总和,判断递归是否结束的标志,pos储存下一次从哪一个位置开始搜索
{
    int i;
    if(sum>tar) return;
    if(sum==tar)
    {
        flag=true;
        for(int i=1;i<=ans;i++)
      printf((i==ans)?"%d\n":"%d+",b[i]);//输出注意格式
    }
    int last=-1;
    for(i=pos+1;i<=n;i++)
    {
        if(!v[i]&&a[i]!=last)
        {
            b[ans+1]=a[i];
            last=a[i];
            v[i]=true;
            dfs(sum+a[i],i,ans+1);
            v[i]=false;
        }
    }
}
int main()
{
    while(scanf("%d%d",&tar,&n)&&(tar||n))
    {
        for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
        memset(v,false,sizeof(v));
        cout<<"Sums of "<<tar<<":"<<endl;
        flag=false;//判断是否找到答案
        dfs(0,0,0);
        if(!flag)
            cout<<"NONE"<<endl;
    }
}

hdu 1258 DFS的更多相关文章

  1. poj1564 Sum It Up (zoj 1711 hdu 1258) DFS

    POJhttp://poj.org/problem?id=1564 ZOJhttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=711 ...

  2. HDOJ(HDU).1258 Sum It Up (DFS)

    HDOJ(HDU).1258 Sum It Up (DFS) [从零开始DFS(6)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双 ...

  3. HDU 5143 DFS

    分别给出1,2,3,4   a, b, c,d个 问能否组成数个长度不小于3的等差数列. 首先数量存在大于3的可以直接拿掉,那么可以先判是否都是0或大于3的 然后直接DFS就行了,但是还是要注意先判合 ...

  4. Snacks HDU 5692 dfs序列+线段树

    Snacks HDU 5692 dfs序列+线段树 题意 百度科技园内有n个零食机,零食机之间通过n−1条路相互连通.每个零食机都有一个值v,表示为小度熊提供零食的价值. 由于零食被频繁的消耗和补充, ...

  5. hdu 1258 Sum It Up(dfs+去重)

    题目大意: 给你一个总和(total)和一列(list)整数,共n个整数,要求用这些整数相加,使相加的结果等于total,找出所有不相同的拼凑方法. 例如,total = 4,n = 6,list = ...

  6. HDU 1258 Sum It Up(dfs 巧妙去重)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1258 Sum It Up Time Limit: 2000/1000 MS (Java/Others) ...

  7. hdu 2266 dfs+1258

    How Many Equations Can You Find Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  8. hdu 1258 Sum It Up (dfs+路径记录)

    pid=1258">Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  9. (step4.3.4)hdu 1258(Sum It Up——DFS)

    题目大意:输入t,n,接下来有n个数组成的一个序列.输出总和为t的子序列 解题思路:DFS 代码如下(有详细的注释): #include <iostream> #include <a ...

随机推荐

  1. 读书笔记_Effective_C++_条款十五:在资源类管理类中提供对原始资源的访问

    void f(int* a) { cout <<* a << endl; } int main() { shared_ptr<int> p(new int(3)); ...

  2. Codeforces Round #276 (Div. 1)

    a. 给俩数, 求他俩之间二进制数中1最多的,有多个输出最小的: 贪心,从小到大加能加就加,最后可能碰到一个不能加了但是当前数比l小,那么就加上这个数,然后从大到小,能减就减,见到符合条件 #incl ...

  3. C++安装JSONCPP

    VS2013里新建一个空的控制台程序(用作测试jsoncpp是否可用),名为: TestJSON 解压下载好的文件:jsoncpp-src-0.5.0.tar.gz 利用VS2008打开jsoncpp ...

  4. Altium Designer极坐标布局方法

    1.键盘快捷组合 O+G,打开栅格管理器,点击左下角的“菜单”,在对话框中的选择“添加极坐标栅格”. 2.双击新添加的优先等级为1的栅格,在弹出的polar  grid editor 对话框中,对里边 ...

  5. WinForm(C#)自定义控件之——RoundButton(圆形按钮)

    最近需要做一个圆形的按钮,去CodeProject找了一下,发现有现成的可用,但不能完全满足我的需求.因此自己试着利用WinForm中的自定义组件功能,制作一个圆形按钮.圆形按钮小制作即将开始之前,先 ...

  6. iOS工程结构

          好的架构不是设计出来的,而是进化而来的! 写在前面 从2011年底开始学习iOS开发,到现在也已经快3年了,虽然中途没有一直进行iOS的开发(总是在Android和iOS间切换),但始终没 ...

  7. swift中的&-备

    参数的传递引用 类是引用类型,其他的数据类型如整型.浮点型.布尔型.字符.字符串.元组.集合.枚举和结构体全部是值类型. 有的时候就是要将一个值类型参数以引用方式传递,这也是可以实现的,Swift提供 ...

  8. Hunt the Wumpus第二个版本---多怪兽,多洞穴,洞穴间双向互通

    其中,将洞穴连起来的算法要好好体会. 学习构建临时变量列表,确认循环用FOR,非确定循环用 WHILE,并定好退出条件. from random import choice cave_numbers ...

  9. Unity3D中C#编写脚本

    1.继承MonoBehaviour类:任何一个游戏脚本都需要去继承MonoBehaviour这个类,只是在创建javascript脚本的时候,系统会将其类名与继承关系隐藏起来. 2.声明变量:使用Ja ...

  10. Powershell创建数组

    在Powershell中创建数组可以使用逗号. PS C:Powershell> $nums=2,0,1,2 PS C:Powershell> $nums 2 0 1 2 对于连续的数字数 ...