I - 深搜 基础

Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n = 6, and the list is [4, 3, 2, 2, 1, 1], then there are four different sums that equal 4: 4, 3+1, 2+2, and 2+1+1. (A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input

The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x 1 , . . . , x n . If n = 0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12 (inclusive), and x 1 , . . . , x n will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.

Output

For each test case, first output a line containing `Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line `NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distinct; the same sum cannot appear twice.

Sample Input

4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output

Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25

题意比较好懂,解析见代码
代码:
/*
 hdu1258
dfs,小数据,dfs暴力搜一遍即可,之前一直做一些图的题目,这算是做的
第一道比较抽象的dfs题目,dfs最重要的思想是递归与回溯来实现状态的转移,是
一种暴力的搜索手段,适用于小数据的情况
*/
#include<iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
using namespace std;
const int maxn=15;
const double epi=1e-8;
const double pi=acos(-1.0);
int a[maxn],b[maxn];
bool v[maxn];//标记数组,避免在一次搜索中重复搜索
int tar,n;
bool flag;
void dfs(int sum,int pos,int ans)//三个参数,sum代表当前层计数总和,判断递归是否结束的标志,pos储存下一次从哪一个位置开始搜索
{
    int i;
    if(sum>tar) return;
    if(sum==tar)
    {
        flag=true;
        for(int i=1;i<=ans;i++)
      printf((i==ans)?"%d\n":"%d+",b[i]);//输出注意格式
    }
    int last=-1;
    for(i=pos+1;i<=n;i++)
    {
        if(!v[i]&&a[i]!=last)
        {
            b[ans+1]=a[i];
            last=a[i];
            v[i]=true;
            dfs(sum+a[i],i,ans+1);
            v[i]=false;
        }
    }
}
int main()
{
    while(scanf("%d%d",&tar,&n)&&(tar||n))
    {
        for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
        memset(v,false,sizeof(v));
        cout<<"Sums of "<<tar<<":"<<endl;
        flag=false;//判断是否找到答案
        dfs(0,0,0);
        if(!flag)
            cout<<"NONE"<<endl;
    }
}

hdu 1258 DFS的更多相关文章

  1. poj1564 Sum It Up (zoj 1711 hdu 1258) DFS

    POJhttp://poj.org/problem?id=1564 ZOJhttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=711 ...

  2. HDOJ(HDU).1258 Sum It Up (DFS)

    HDOJ(HDU).1258 Sum It Up (DFS) [从零开始DFS(6)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双 ...

  3. HDU 5143 DFS

    分别给出1,2,3,4   a, b, c,d个 问能否组成数个长度不小于3的等差数列. 首先数量存在大于3的可以直接拿掉,那么可以先判是否都是0或大于3的 然后直接DFS就行了,但是还是要注意先判合 ...

  4. Snacks HDU 5692 dfs序列+线段树

    Snacks HDU 5692 dfs序列+线段树 题意 百度科技园内有n个零食机,零食机之间通过n−1条路相互连通.每个零食机都有一个值v,表示为小度熊提供零食的价值. 由于零食被频繁的消耗和补充, ...

  5. hdu 1258 Sum It Up(dfs+去重)

    题目大意: 给你一个总和(total)和一列(list)整数,共n个整数,要求用这些整数相加,使相加的结果等于total,找出所有不相同的拼凑方法. 例如,total = 4,n = 6,list = ...

  6. HDU 1258 Sum It Up(dfs 巧妙去重)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1258 Sum It Up Time Limit: 2000/1000 MS (Java/Others) ...

  7. hdu 2266 dfs+1258

    How Many Equations Can You Find Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  8. hdu 1258 Sum It Up (dfs+路径记录)

    pid=1258">Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  9. (step4.3.4)hdu 1258(Sum It Up——DFS)

    题目大意:输入t,n,接下来有n个数组成的一个序列.输出总和为t的子序列 解题思路:DFS 代码如下(有详细的注释): #include <iostream> #include <a ...

随机推荐

  1. POJ 1151 - Atlantis 线段树+扫描线..

    离散化: 将所有的x轴坐标存在一个数组里..排序.当进入一条线段时..通过二分的方式确定其左右点对应的离散值... 扫描线..可以看成一根平行于x轴的直线..至y=0开始往上扫..直到扫出最后一条平行 ...

  2. Guava 15新特性介绍

    原文:http://www.javacodegeeks.com/2013/10/guava-15-new-features.html Guava 是众所周知的google出品的开源工具包,十分好用,本 ...

  3. 3月23日html(五) 格式与布局练习:360浏览器布局

    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> < ...

  4. ubuntu下安装pyqt5

    在网上看了很多ubuntu系统中安装pyqt5,感觉有些麻烦. 主要的库只有一个:python3-pyqt5 可通过新立得安装,也可通过shell命令安装 sudo apt-get install p ...

  5. Python学习笔记总结(四)异常处理

    1.基础 try/except/else:[else是可选的]捕捉由代码中的异常并恢复,匹配except里面的错误,并执行except中定义的代码,后继续执行程序(发生异常后,由except捕捉到异常 ...

  6. JDBC 基础概念

    1.概念:java与数据库连接 2.JDBC:是一个规范,提供接口(面向接口编程) 3.JDBC API:提供程序员调用的接口和类,集成在java.sql和javax.sql包中.如:DriverMa ...

  7. objc runtime 动态增加属性

    objective-c中,有类别可以在不修改源码的基础上增加方法:近排在看别人的开源代码时,发现还可以动态增加属性.而且是在运行时,太牛B了. 使用运行时库,必须要先引入 objc/runtime.h ...

  8. 在类库中使用log4net

    最近在做一个类库,用的C#写的,为了DEBUG方便需要日志输出,于是找了log4net这个工具进行日志输出; 因为调用这个类库的是C++,而且本人对C++不是很熟悉,于是无法在app.config或者 ...

  9. Manacher马拉车

    俗话说:摩托再好,不如骡拉啊(好像不是骡) Manacher就是O(N)计算最长回文子串的算法. 其中我们需要在0位置加入字符“$",然后原字符串中每两个字符加入一个"#" ...

  10. Qt自定义sleep延时函数(巧妙的使用时间差,但这样似乎CPU满格,而不是沉睡)

    Qt不像VC++的win32/MFC编程那样,提供了现成的sleep函数可供调用.Qt把sleep函数封装在QThread类中.子线程可以调用sleep函数.但是如果用户想在主线程实现延时功能,该怎么 ...