I - 深搜 基础

Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n = 6, and the list is [4, 3, 2, 2, 1, 1], then there are four different sums that equal 4: 4, 3+1, 2+2, and 2+1+1. (A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input

The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x 1 , . . . , x n . If n = 0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12 (inclusive), and x 1 , . . . , x n will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.

Output

For each test case, first output a line containing `Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line `NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distinct; the same sum cannot appear twice.

Sample Input

4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output

Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25

题意比较好懂,解析见代码
代码:
/*
 hdu1258
dfs,小数据,dfs暴力搜一遍即可,之前一直做一些图的题目,这算是做的
第一道比较抽象的dfs题目,dfs最重要的思想是递归与回溯来实现状态的转移,是
一种暴力的搜索手段,适用于小数据的情况
*/
#include<iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
using namespace std;
const int maxn=15;
const double epi=1e-8;
const double pi=acos(-1.0);
int a[maxn],b[maxn];
bool v[maxn];//标记数组,避免在一次搜索中重复搜索
int tar,n;
bool flag;
void dfs(int sum,int pos,int ans)//三个参数,sum代表当前层计数总和,判断递归是否结束的标志,pos储存下一次从哪一个位置开始搜索
{
    int i;
    if(sum>tar) return;
    if(sum==tar)
    {
        flag=true;
        for(int i=1;i<=ans;i++)
      printf((i==ans)?"%d\n":"%d+",b[i]);//输出注意格式
    }
    int last=-1;
    for(i=pos+1;i<=n;i++)
    {
        if(!v[i]&&a[i]!=last)
        {
            b[ans+1]=a[i];
            last=a[i];
            v[i]=true;
            dfs(sum+a[i],i,ans+1);
            v[i]=false;
        }
    }
}
int main()
{
    while(scanf("%d%d",&tar,&n)&&(tar||n))
    {
        for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
        memset(v,false,sizeof(v));
        cout<<"Sums of "<<tar<<":"<<endl;
        flag=false;//判断是否找到答案
        dfs(0,0,0);
        if(!flag)
            cout<<"NONE"<<endl;
    }
}

hdu 1258 DFS的更多相关文章

  1. poj1564 Sum It Up (zoj 1711 hdu 1258) DFS

    POJhttp://poj.org/problem?id=1564 ZOJhttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=711 ...

  2. HDOJ(HDU).1258 Sum It Up (DFS)

    HDOJ(HDU).1258 Sum It Up (DFS) [从零开始DFS(6)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双 ...

  3. HDU 5143 DFS

    分别给出1,2,3,4   a, b, c,d个 问能否组成数个长度不小于3的等差数列. 首先数量存在大于3的可以直接拿掉,那么可以先判是否都是0或大于3的 然后直接DFS就行了,但是还是要注意先判合 ...

  4. Snacks HDU 5692 dfs序列+线段树

    Snacks HDU 5692 dfs序列+线段树 题意 百度科技园内有n个零食机,零食机之间通过n−1条路相互连通.每个零食机都有一个值v,表示为小度熊提供零食的价值. 由于零食被频繁的消耗和补充, ...

  5. hdu 1258 Sum It Up(dfs+去重)

    题目大意: 给你一个总和(total)和一列(list)整数,共n个整数,要求用这些整数相加,使相加的结果等于total,找出所有不相同的拼凑方法. 例如,total = 4,n = 6,list = ...

  6. HDU 1258 Sum It Up(dfs 巧妙去重)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1258 Sum It Up Time Limit: 2000/1000 MS (Java/Others) ...

  7. hdu 2266 dfs+1258

    How Many Equations Can You Find Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  8. hdu 1258 Sum It Up (dfs+路径记录)

    pid=1258">Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  9. (step4.3.4)hdu 1258(Sum It Up——DFS)

    题目大意:输入t,n,接下来有n个数组成的一个序列.输出总和为t的子序列 解题思路:DFS 代码如下(有详细的注释): #include <iostream> #include <a ...

随机推荐

  1. HTML 学习网站

    http://www.w3school.com.cn/tiy/t.asp?f=html_intro

  2. C++ 基本数据结构整理

    Hash Map (Unordered_map) Insert #include <unordered_map> using namespace std; unordered_map &l ...

  3. phpmyadmin自增字段

    自增字段必须为primary key 2种方法: 1- ALTER TABLE `qr_role` CHANGE `ROLE_ID` `ROLE_ID` INT(11) NOT NULL AUTO_I ...

  4. mysql for python,银行转账模拟

    学习中, 本人为初学者.勿喷. #-*- coding:utf-8 -*- import MySQLdb class Tranferaccount(object): def __init__(self ...

  5. Pyzo -- 好用的 Python 轻量级 IDE

    近期 yvivid 使用 Python 进行科学计算类应用(如matlab部分应用场景) 比较好的 发行版本为 Anaconda: A free distribution for the SciPy ...

  6. Java学习笔记--String StringBuffer StringBuilder

    String StringBuffer StringBuilder String http://docs.oracle.com/javase/7/docs/api/ 中文: http://www.cn ...

  7. shell编程技术之-基础知识

    一.脚本结构 linux下shell的脚本,是将一系列命令序列写在一个文本文件,而这个文本文件时可执行的.相对命令行来说,开发效率提高.因此他的构架有2部分构成#!和命令序列.其中#!指明此脚本是用哪 ...

  8. MySQL 优化方案

    基本上通过索引来解决 . 通常索引键在where , group by , order by 相关的列 一个表只能用一个索引(查询的时候)所以当要执行复杂查询时最好使用联合索引就是 index (a, ...

  9. BZOJ2292: 【POJ Challenge 】永远挑战

    2292: [POJ Challenge ]永远挑战 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 513  Solved: 201[Submit][ ...

  10. 深入浅出Node.js (8) - 构建Web应用

    8.1 基础功能 8.1.1 请求方法 8.1.2 路径解析 8.1.3 查询字符串 8.1.4 Cookie 8.1.5 Session 8.1.6 缓存 8.1.7 Basic认证 8.2 数据上 ...