转载请注明出处:

http://www.cnblogs.com/darkknightzh/p/5462631.html

参考网址:

https://software.intel.com/zh-cn/node/504170

https://software.intel.com/en-us/node/599808

https://software.intel.com/en-us/node/504340

 #include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
using namespace cv;
#include <ipp.h> enum ConvolutionType // 卷积时参数的类型
{
CONVOLUTION_FULL, // 卷积时的参数,和 matlab 的 full 一致
CONVOLUTION_SAME, // 卷积时的参数,和 matlab 的 same 一致
CONVOLUTION_VALID // 卷积时的参数,和 matlab 的 valid 一致
}; void Conv2IPP(Mat& convRes, const Mat& imgIn, const Mat& kernelIn, ConvolutionType type, int ddepth)
{
Mat img = imgIn.clone(), kernel = kernelIn.clone();
const IppiSize imgSize = { img.cols, img.rows };
const IppiSize kerSize = { kernel.cols, kernel.rows }; if (CV_32FC1 != img.type())
{
img.convertTo(img, CV_32FC1); // ipp的库支持8u,16s,32f这几种精度的数据的卷积
}
if (CV_32FC1 != kernel.type())
{
kernel.convertTo(kernel, CV_32FC1);
} int nConvResW = img.cols + kernel.cols - ;
int nConvResH = img.rows + kernel.rows - ;
// 如果直接声明Mat的变量,并在ippiConv_32f_C1R中传递.data缓冲区的话,程序会崩溃,因而只能先加一个临时变量
float *pConvRes = new float[nConvResW * nConvResH]; // ippiROIFull改为ippiROIValid或者ippiROISame对应matlab响应的参数。不能直接改,否则结果不对。具体怎么改,暂时不清楚。
IppEnum funCfgFull = (IppEnum)(ippAlgAuto | ippiROIFull | ippiNormNone);
int bufSizeFull;
IppStatus status = ippiConvGetBufferSize(imgSize, kerSize, ipp32f, , funCfgFull, &bufSizeFull);
Ipp8u* pBuffer = ippsMalloc_8u(bufSizeFull); ippiConv_32f_C1R((Ipp32f*)img.data, img.step, imgSize, (Ipp32f*)kernel.data, kernel.step, kerSize,
pConvRes, nConvResW * , funCfgFull, pBuffer); // 此处应该使用nConvResW * 4 Mat matConvResTemp(nConvResH, nConvResW, CV_32FC1);
memcpy(matConvResTemp.data, pConvRes, sizeof(float)* nConvResH * nConvResW); Rect r;
switch (type)
{
case CONVOLUTION_FULL: // full
r = Rect(, , matConvResTemp.cols, matConvResTemp.rows);
break;
case CONVOLUTION_SAME: // same
r = Rect((kernel.cols + 0.5) / , (kernel.rows + 0.5) / , img.cols, img.rows);
break;
case CONVOLUTION_VALID: // valid
r = Rect((kernel.cols + 0.5) / , (kernel.rows + 0.5) / , img.cols - kernel.cols + , img.rows - kernel.rows + );
break;
default: // same
r = Rect((kernel.cols + 0.5) / , (kernel.rows + 0.5) / , img.cols, img.rows);
break;
} matConvResTemp(r).convertTo(convRes, ddepth, , ); // ddepth为CV_32FC1等类型 ippsFree(pBuffer);
delete[] pConvRes;
pConvRes = nullptr;
}

说明:不确定的有2处:

1. 此程序计算卷积还是相关?感觉像是相关而非卷积(之前写过的程序计算相关,此处和之前的结果总体上相似。理论上卷积是核需要上下左右镜像的,这个地方不确定)

ps:应该是卷积。

2. CONVOLUTION_FULL没有问题,CONVOLUTION_SAME不确定矩形框是否正确,CONVOLUTION_VALID也不确定是否正确。实际上对于后两者,可以将标志funCfgFull从ippiROIFull改为ippiROISame或者ippiROIValid,不过卷积的缓冲区pConvRes需要相应的改变大小。还有,如果直接改标志的话,卷积的结果不正确。不清楚什么原因。

ps:当使用ippiROISame时,计算到的bufSizeFull的值为0,因而卷积的结果不正确。不明白为什么。

150506更新:

在第三个参考网址中,发现了另一个函数ippiCrossCorrNorm_32f_C1R,用于计算相关。可以选用ippiROISame参数。

 Mat Conv2IPPSame(const Mat& imgIn, const Mat& kernelIn)
{
Mat img = imgIn.clone(), kernel = kernelIn.clone();
const IppiSize imgSize = { img.cols, img.rows };
const IppiSize kerSize = { kernel.cols, kernel.rows }; if (CV_32FC1 != img.type())
{
img.convertTo(img, CV_32FC1);
}
if (CV_32FC1 != kernel.type())
{
kernel.convertTo(kernel, CV_32FC1);
} int nConvResW = img.cols;
int nConvResH = img.rows;
float *pConvRes = new float[nConvResW * nConvResH]; int bufSize;
IppEnum funCfg = (IppEnum)(ippAlgAuto | ippiROISame | ippiNormNone);
IppStatus status = ippiCrossCorrNormGetBufferSize(imgSize, kerSize, funCfg, &bufSize);
Ipp8u* pBuffer = ippsMalloc_8u(bufSize); ippiCrossCorrNorm_32f_C1R((Ipp32f*)img.data, img.step, imgSize, (Ipp32f*)kernel.data, kernel.step, kerSize,
pConvRes, nConvResW * , funCfg, pBuffer); Mat matConvRes(nConvResH, nConvResW, CV_32FC1);
memcpy(matConvRes.data, pConvRes, sizeof(float)* nConvResH * nConvResW); ippsFree(pBuffer);
delete[] pConvRes;
pConvRes = nullptr; return matConvRes;
}

从参考网址3中可以看到,ippiNormNone是计算相关的意思。

需要注意的是,第二个程序是计算相关的程序,而非卷积。和matlab的程序对比测试,发现第一个程序结果和卷积的结果相似,第二个程序的结果和相关的结果相似。

(原)使用intel的ipp库计算卷积及相关的更多相关文章

  1. (原)配置vs2013使用intel的IPP库

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5473890.html 参考网址: https://software.intel.com/en-us/n ...

  2. IPP库下FFT的基本实现

    首先感谢韩昊同学,他的傅里叶分析入门给我们对数学公式不熟悉的人了解傅里叶算法打开了一扇窗户,其原文发表于知乎:https://zhuanlan.zhihu.com/p/19763358 在了解其基本原 ...

  3. 图像卷积、相关以及在MATLAB中的操作

    图像卷积.相关以及在MATLAB中的操作 2016年7月11日 20:34:35, By ChrisZZ 区分卷积和相关 图像处理中常常需要用一个滤波器做空间滤波操作.空间滤波操作有时候也被叫做卷积滤 ...

  4. (原+转)使用opencv的DFT计算卷积

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5462665.html 参考网址: http://blog.csdn.net/lichengyu/art ...

  5. BLAS 与 Intel MKL 数学库

    0. BLAS BLAS(Basic Linear Algebra Subprograms)描述和定义线性代数运算的规范(specification),而不是一种具体实现,对其的实现包括: AMD C ...

  6. 利用python库计算person相关系数

    使用numpy库,可以实现person相关系数的计算,例如对于矩阵a. a Out[235]: array([[1, 1, 2, 2, 3], [2, 2, 3, 3, 5], [1, 4, 2, 2 ...

  7. Python:raschii库计算任意阶数Stokes波

    Stokes五阶波 最近发现一个很有用的Stokes波计算Python库,raschii官方说明,可以计算任意阶数,不同水深下的Stokes波,简单做了下测试,测试结果与脚本如下 Python 脚本 ...

  8. Intel 编译Boost库

    C:\Windows\SysWOW64\cmd.exe /E:ON /V:ON /K ""C:\Program Files (x86)\Intel\Composer XE 2013 ...

  9. Python datetime库计算两个时间点之间的分钟(秒、天)数

    计算两个时间点之间的分钟数 import datetime def minNums(startTime, endTime): '''计算两个时间点之间的分钟数''' # 处理格式,加上秒位 start ...

随机推荐

  1. (原)ubuntu安装libtbb.so.2

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6098132.html 参考网址: https://launchpad.net/ubuntu/+sour ...

  2. 【JAVA编码】 JAVA字符编码系列二:Unicode,ISO-8859,GBK,UTF-8编码及相互转换

    http://blog.csdn.net/qinysong/article/details/1179489 这两天抽时间又总结/整理了一下各种编码的实际编码方式,和在Java应用中的使用情况,在这里记 ...

  3. [Mugeda HTML5技术教程之13]链接的添加方式

    在广告主的需求中,有很多情况下需要在动画中添加一些外部链接.这份文档就在Mugeda动画中添加外部链接的方式,做一下梳理. 1.通过点击触发的链接 就是要用户点击屏幕来触发链接的情况,这是推荐使用的方 ...

  4. 答:我们公司的ASP.NET 笔试题,你觉得难度如何

    闲来无事,逛逛园子,发现有个面试题,觉得有意思.已自己的理解答来看看,不足之处,请多指教. 原文地址:http://www.cnblogs.com/leotsai/p/aspnet-tests-for ...

  5. MyEclipse8.5自动生成注册码

    package com; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamRe ...

  6. hdu 1245 Saving James Bond

    http://acm.hdu.edu.cn/showproblem.php?pid=1245 #include <cstdio> #include <cstring> #inc ...

  7. LeetCode_Spiral Matrix

    Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral or ...

  8. uniq详解

    一.简介 报告或删除文件中重复的行. uniq 命令读取由 InFile 参数指定的标准输入或文件.该命令首先比较相邻的行,然后除去第二行和该行的后续副本.重复的行一定相邻.(在发出 uniq 命令之 ...

  9. 2301: [HAOI2011]Problem b

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4164  Solved: 1888[Submit] ...

  10. jQuery autocomplete 使用

    推荐 :http://www.cnblogs.com/Peter-Zhang/archive/2011/10/22/2221147.html eg: $("#txtGrand"). ...