SciTech-Mathmatics-等比数列n项加总公式 + 三角函数Trigonometric Identities you must remember: 需要记住的三角函数
- $\large S_n = a_1 \cdot \frac{1-q^n}{1-q}=\frac{a_1-a_n \cdot q}{1-q},\ when\ q \neq 1 \ and\ a_1 \neq 0 $
- $\large S_n=n \cdot a_1,\ when\ q=1 $
- \(\large proof\):
\(\large \begin{array}{rrl} \\
\because & S_n &=a_1+a_2+...+a_n \\
& &=\sum_{i=2}^{n}{a_i} + a_1 \\
& q \cdot S_n&= \sum_{i=2}^{n}{a_i} + a_{n+1} \\
& &\Uparrow a_2+ a_3+...+ a_n+ a_{(n+1)} \\
& &\Uparrow a_1 \cdot q + a_2 \cdot q +...+ a_n \cdot q \\
& a_{n+1} &=a_1 \cdot q^{n} \\
\\
\therefore & S_n-q \cdot S_n &=(1-q) \cdot S_n=a_1-a_{n+1} \\
\\ \end{array}\)
$\large S_n =a_1 \cdot \frac{1-q^n}{1-q},\ where\ q \neq 1 $
Trigonometric Identities (Revision : 1.4)
Trigonometric Identities you must remember
The “big three” trigonometric identities are
\(\large \begin{equation} \sin^{2} t + cos^{2} t = 1 \tag{1} \end{equation}\)
\(\large \begin{equation} \sin(A + B) = \sin A \cos B + \cos A \sin B \tag{2} \end{equation}\)
\(\large \begin{equation} \cos(A + B) = \cos A \cos B − \sin A \sin B \tag{3} \end{equation}\)Using these we can derive many other identities. Even if we commit the other useful identities to memory, these three will help be sure that our signs are correct, etc.
Two more easy identities
From equation (1) we can generate two more identities. First, divide each term in (1) by \(cos^{2} t\) (assuming it is not zero) to obtain
\(\large \begin{equation} \tan^{2} t + 1 = \sec^{2} t \tag{4} \end{equation}\)When we divide by \(sin^2 t\) (again assuming it is not zero) we get
\(\large \begin{equation} 1 + cot^{2} t = csc^{2} t \tag{5} \end{equation}\)Identities involving the difference of two angles
From equations (2) and (3) we can get several useful identities. First, recall that
\(\large \begin{equation} \cos(−t) = \cos t, \sin(−t) = − \sin t. \tag{6} \end{equation}\)From (2) we see that
\[\large \begin{array}{rl} \sin(A − B) &= \sin(A + (−B)) \\
&= \sin A \cos(−B) + \cos A \sin(−B) \end{array}\]which, using the relationships in (6), reduces to
\(\large \begin{equation} \sin(A − B) = \sin A \cos B − \cos A \sin B \tag{7} \end{equation}\)In a similar way, we can use equation (3) to find
\[\large \begin{array}{rl} \cos(A − B) &= \cos(A + (−B)) \\
&= \cos A \cos(−B) − \sin A \sin(−B) \end{array}\]which simplifies to
\[\large \begin{array}{rl} \cos(A − B) = \cos A \cos B + \sin A \sin B \tag{8} \end{array}
\]Notice that by remembering the identities (2) and (3) you can easily work out the signs in these last two identities.
Identities involving products of sines and cosines
If we now add equation (2) to equation (7)
\[\large \begin{array}{rl} \\
\sin (A−B) &= \sin A \cos B − \cos A \sin B \\
+( \sin (A+B) &= \sin A \cos B + \cos A \sin B ) \\
\end{array}\]we find
\[\large \begin{array}{rl} \sin(A − B) + \sin(A + B) = 2 \sin A \cos B \end{array}
\]and dividing both sides by 2 we obtain the identity
\[\large \begin{array}{rl} \sin A \cos B = \frac{1}{2} \sin(A − B) + \frac{1}{2} \sin(A + B) \tag{9} \end{array}
\]In the same way we can add equations (3) and (8)
\[\large \begin{array}{rl} \\
\cos(A−B) &= \cos A \cos B + \sin A \sin B \\
+ (\cos(A+B) &= \cos A \cos B − \sin A \sin B) \\
\end{array}\]to get
\[\large \begin{array}{rl} \cos (A − B) + \cos (A + B) = 2 \cos A \cos B \end{array}
\]which can be rearranged to yield the identity
\[\large \begin{array}{rl} \cos A \cos B = \frac{1}{2} \cos (A − B) + \frac{1}{2} \cos (A + B) \tag{10} \end{array}
\]Suppose we wanted an identity involving \(\sin A \sin B\). We can find one by slightly modifying the last thing we did.
Rather than adding equations (3) and (8), all we need to do is subtract equation (3) from equation (8):\[\large \begin{array}{rl} \cos (A−B) &= \cos A \cos B + \sin A \sin B \\ − (\cos (A+B) & =\cos A \cos B − \sin A \sin B ) \\ \end{array}
\]This gives
\[\large \begin{array}{rl} \cos (A − B) − \cos(A + B) = 2 \sin A \sin B \end{array}
\]or, in the form we prefer,
\[\large \begin{array}{rl} \sin A \sin B = \frac{1}{2} \cos (A − B) − \frac{1}{2} \cos (A + B) \tag{11} \end{array}
\]Double angle identities
Now a number of easy ones. If we let \(A = B\) in equations (2) and (3) we get the two identities
\[\large \begin{array}{rl} \sin 2A = 2\sin A \cos A \tag{12} \end{array}
\]\[\large \begin{array}{rl} \cos 2A = cos^{2} A−sin^{2} A \tag{13} \end{array}
\]Identities for sine squared and cosine squared
If we have A = B in equation (10) then we find
\[\large \begin{array}{rl} \cos A \cos B &= \frac{1}{2} \cos (A−B) + \frac{1}{2} \cos (A+B) \\
\Rightarrow \cos^{2} A &= \frac{1}{2} \cos 0 + \frac{1}{2} \cos 2A \end{array}\]Simplifying this and doing the same with equation (11) we find the two identities
\[\large \begin{array}{rl} \cos^{2} A = \frac{1}{2} (1+\cos 2A) \tag{14} \end{array}
\]\[\large \begin{array}{rl} \sin^{2} A = \frac{1}{2} (1−\cos 2A) \tag{15} \end{array}
\]Identities involving tangent
Finally, from equations (2) and (3) we can obtain an identity for $\tan (A + B):
\[\large \begin{array}{rl} \tan (A+B)= \frac{\sin (A+B)}{\cos (A + B)} = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B − \sin A \sin B} \end{array}
\]Now divide numerator and denominator by cos A cos B to obtain the identity we wanted:
\[\large \begin{array}{rl} \tan (A+B)= \frac{\tan A + \tan B}{1−\tan A \tan B} \tag{16} \end{array}
\]We can get the identity for tan(A − B) by replacing B in (16) by −B and noting that tangent is an odd function:
\[\large \begin{array}{rl} \tan (A-B)= \frac{\tan A - \tan B}{1+\tan A \tan B} \tag{17} \end{array}
\]Summary
There are many other identities that can be generated this way. In fact, the derivations above are not unique — many trigonometric identities can be obtained many different ways. The idea here is to be very familiar with a small number of identities so that you are comfortable manipulating and combining them to obtain whatever identity you need to.
SciTech-Mathmatics-等比数列n项加总公式 + 三角函数Trigonometric Identities you must remember: 需要记住的三角函数的更多相关文章
- BUAA_OO_homworkone包含三角函数的多项式求导
第一次作业 基于x的简单多项式相加求导 带符号整数 支持前导0的带符号整数,符号可省略,如: +02.-16>.19260817等. 幂函数 一般形式 由自变量x和指数组成,指数为一个带符号整数 ...
- 神经网络损失函数中的正则化项L1和L2
神经网络中损失函数后一般会加一个额外的正则项L1或L2,也成为L1范数和L2范数.正则项可以看做是损失函数的惩罚项,用来对损失函数中的系数做一些限制. 正则化描述: L1正则化是指权值向量w中各个元素 ...
- 怎样批量修改MathType公式格式
MathType是一款数学公式编辑器,我们在写论文的时候常常会遇到,但是有时由于公式的样式.大小和间隔等不符合论文要求,这个时候我们如果一个个修改是很麻烦的,还容易出错.所以批量修改就非常的有必要了, ...
- 文档公式编辑神器-Snip
最近在重新学习统计学的一些基础知识,整理笔记的时候需要输入一些数学公式.从学校毕业之后,就没有在文档中插入过公式了.按照以前的经验,我把输入公式的方式分成两类. 所见即所得的方式,常见的就是微软wor ...
- sql server编写脚本求解第1天1分钱之后每天两倍持续一个月的等比数列问题
一.问题 问题1 场景:如果你未来的丈母娘要求你,第1天给她1分钱,第2天给2分钱,第3天给4分钱,以此类推,每天给前一天的2倍,给1个月(按30天)算就行.问:第30天给多少钱,总共给多少钱? 问题 ...
- 2019河北省大学生程序设计竞赛(重现赛)B 题 -Icebound and Sequence ( 等比数列求和的快速幂取模)
题目链接:https://ac.nowcoder.com/acm/contest/903/B 题意: 给你 q,n,p,求 q1+q2+...+qn 的和 模 p. 思路:一开始不会做,后面查了下发现 ...
- Python编程求解第1天1分钱之后每天两倍持续一个月的等比数列问题
一.问题 问题1 场景:如果你未来的丈母娘要求你,第1天给她1分钱,第2天给2分钱,第3天给4分钱,以此类推,每天给前一天的2倍,给1个月(按30天)算就行.问:第30天给多少钱,总共给多少钱? 问题 ...
- 三角函数与缓入缓出动画及C#实现(图文讲解)
日常经常能看到缓入缓出的动画效果,如: 1,带缓入缓出效果的滚动条: 2,带缓入缓出效果的呼吸灯: 像上面这种效果,就是用到了三角函数相关的知识,下面将从头开始一步步去讲解如何实现这种效果. 一.基础 ...
- hdu_4651_Partition(公式)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=4651 题意:给你一个数n,让你输出将n拆分的方案数. 题解:公式题,不解释,当模版记住就行 #incl ...
- 人教版高中数学(A版)
必修1 (已看) 第一章 集合与函数概念 1.1 集合 1.2 函数及其表示 1.3 函数的基本性质 第二章 基本初等函数(1) 2.1 指数函数 2.2 对数函数 2.3 幂函数 第三章 函数的应用 ...
随机推荐
- .net6 api添加接口注释
参照: .NET 6 Swagger添加xml注释 - 凡尘一叶~ - 博客园 (cnblogs.com)[这个比较准] .net core的Swagger接口文档使用教程(一):Swashbuckl ...
- STM32F407——使用systick定时器裸机制作延时函数
准备工作: 软件:keil5 硬件:STM32F407ZET6芯片,gec6818开发板,st-link调试器 文档:<开发板原理图>,<Cortex M3与M4权威指南>,& ...
- 【工具】Zotero|使用Zotero向Word/WPS中插入引用文献(2023年)
版本:Word 2021,Zotero 6.0.30 版本:WPS 教育版,HUST 前言:两年前我找网上插入文献的方式,网上的博客提示让我去官网下个插件然后才能装,非常麻烦,导致我对Zotero都产 ...
- MCP 实践系列:百度 AI 搜索
今天在腾讯云MCP市场,我发现了许多不同的MCP组件.接下来,我打算逐一深入了解每个组件的具体功能.今天的重点将是百度AI搜索. 百度AI搜索结合了百度的传统搜索和人工智能技术,能让用户体验到更智能的 ...
- 鸿蒙NEXT实战教程—实现音乐歌词同步滚动
之前写过一个音乐播放器项目,今天再给它完善一下,加一个歌词同步滚动. 先看效果图: 要做歌词同步滚动,我们首先需要的文件资源就是音乐文件和与之匹配的歌词文件.现在歌词文件不太好找,没关系,我们可以 ...
- 【TensorRT 10 C++ inference example】最新版本TensorRT c++ api的推理部署教程
TensorRT是英伟达推出的部署框架,我的工作经常需要封装我的AI算法和模型给到桌面软件使用,那么tensorRT对我来说就是不二之选.TensorRT和cuda深度绑定,在c++版本的推理教程 ...
- 取余(rem)和取模(mod)的区别
设 A rem B || A mod B 生成机制 取余:采取fix()函数,向0方向取整 取模:采取floor()函数,向无穷小方向取整 当A,B异号时(其实同号也是这个规律-) 取余:结果和A同号 ...
- Leangoo助力医药行业项目降本增效
医药行业痛点诸多,制药研发周期长.生物技术创新协同难.医疗器械研发生产衔接不畅.医疗保健服务流程繁琐.Leangoo 可化解困境,促各领域信息共享.流程优化.协同增效,提升效率与质量,推动医药行业整体 ...
- Innosetup 安装 VC_redist 运行时库
#普通安装vc_redis.x86.exe(会提示用户做出选择),在innosetup的[Run]属性中添加下面这一行 Filename: "{app}VC_redist.x86.exe&q ...
- openssl头文件出现DEPRECATEDIN_1_1_0导致引入头文件时程序无法编译
我使用的是unbuntu20.04版本中,通过apt安装的openssl,发现openssl中的多个库文件中会出现类似'DEPRECATEDIN_1_1_0(unsigned char *ASN1_S ...