Goldbach's Conjecture

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture:

Every even number greater than 4 can be 
written as the sum of two odd prime numbers.

For example:

8 = 3 + 5. Both 3 and 5 are odd prime numbers. 
20 = 3 + 17 = 7 + 13. 
42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.) 
Anyway, your task is now to verify Goldbach's conjecture for all even numbers less than a million. 

Input

The input will contain one or more test cases. 
Each test case consists of one even integer n with 6 <= n < 1000000. 
Input will be terminated by a value of 0 for n.

Output

For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized. If there is no such pair, print a line saying "Goldbach's conjecture is wrong."

Sample Input

8
20
42
0

Sample Output

8 = 3 + 5
20 = 3 + 17
42 = 5 + 37
 #include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
bool isprime ( int k )
{
int t = sqrt ( k + 0.5 ) ;
for ( int i = ; i <= t ; i ++ )
if ( k % i == )
return false ;
return true ;
}
int main()
{
// freopen ("a.txt" , "r" , stdin );
int n ;
while ( scanf ("%d", &n) , n )
{
int i ;
int t = n / ;
for ( i = ; i <= t ; i += )
if ( isprime ( i ) && isprime ( n - i ) )
break ;
printf ( "%d = %d + %d\n" , n , i , n - i ) ;
}
return ;
}

n = isprime(i) + isprime(n - i)

Goldbach's Conjecture的更多相关文章

  1. Poj 2262 / OpenJudge 2262 Goldbach's Conjecture

    1.Link: http://poj.org/problem?id=2262 http://bailian.openjudge.cn/practice/2262 2.Content: Goldbach ...

  2. poj 2262 Goldbach's Conjecture(素数筛选法)

    http://poj.org/problem?id=2262 Goldbach's Conjecture Time Limit: 1000MS   Memory Limit: 65536K Total ...

  3. HDOJ 1397 Goldbach's Conjecture(快速筛选素数法)

    Problem Description Goldbach's Conjecture: For any even number n greater than or equal to 4, there e ...

  4. Goldbach's Conjecture(哥德巴赫猜想)

    Goldbach's Conjecture Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  5. UVa 543 - Goldbach's Conjecture

    题目大意:给一个偶数,判断是否是两个素数的和. 先用sieve方法生成一个素数表,然后再进行判断即可. #include <cstdio> #include <vector> ...

  6. 【LightOJ1259】Goldbach`s Conjecture(数论)

    [LightOJ1259]Goldbach`s Conjecture(数论) 题面 Vjudge T组询问,每组询问是一个偶数n 验证哥德巴赫猜想 回答n=a+b 且a,b(a<=b)是质数的方 ...

  7. POJ 2262 Goldbach's Conjecture (打表)

    题目链接: https://cn.vjudge.net/problem/POJ-2262 题目描述: In 1742, Christian Goldbach, a German amateur mat ...

  8. 题目1440:Goldbach's Conjecture(哥达巴赫猜想)

    题目链接:http://ac.jobdu.com/problem.php?pid=1440 详解链接:https://github.com/zpfbuaa/JobduInCPlusPlus 参考代码: ...

  9. Goldbach`s Conjecture(素筛水题)题解

    Goldbach`s Conjecture Goldbach's conjecture is one of the oldest unsolved problems in number theory ...

随机推荐

  1. Yii2-Redis使用小记 - Cache

    前些天简单学习了下 Redis,现在准备在项目上使用它了.我们目前用的是 Yii2 框架,在官网搜索了下 Redis,就发现了yii2-redis这扩展. 安装后使用超简单,打开 common/con ...

  2. mysqldumpslow使用说明

    mysqldumpslow使用说明 mysqldumpslow --help Usage: mysqldumpslow [ OPTS... ] [ LOGS... ] Parse and summar ...

  3. 【MPI学习4】MPI并行程序设计模式:非阻塞通信MPI程序设计

    这一章讲了MPI非阻塞通信的原理和一些函数接口,最后再用非阻塞通信方式实现Jacobi迭代,记录学习中的一些知识. (1)阻塞通信与非阻塞通信 阻塞通信调用时,整个程序只能执行通信相关的内容,而无法执 ...

  4. Siege——多线程编程最佳实例

    在英语中,“Siege”意为围攻.包围.同时Siege也是一款使用纯C语言编写的开源WEB压测工具,适合在GNU/Linux上运行,并且具有较强的可移植性.之所以说它是多线程编程的最佳实例,主要原因是 ...

  5. [软件测试]Linux环境中简单清爽的Google Test (GTest)测试环境搭建(初级使用)

    本文将介绍单元测试工具google test(GTEST)在linux操作系统中测试环境的搭建方法.本文属于google test使用的基础教程.在linux中使用google test之前,需要对如 ...

  6. grootJs 属性过滤器

    index10.html <html><head> <title>属性过滤器</title> <script src="jquery-1 ...

  7. 谏牲口TT十思疏

    予闻:求木之长着,必固其根本:欲流之远者,必浚其泉源:思吾之长者,必积其学识.源不深而望流之远,根不固而求木之长,识不积而思指日之安,斯虽下愚,知其不可,而况于TT乎?TT当举家之重,虑只此一生,将孝 ...

  8. [JQuery EasyUI系列]简介

    一.jQuery EasyUI是一个基于jQuery的框架,继承了各种用户界面插件. 二.jQuery EasyUI框架提供了创建网页所需的一切,可以轻松建立站点. easyui是一个基于jQuery ...

  9. Java 读取文件到字符串

    Java的io操作比较复杂 package cn.outofmemory.util; import java.io.BufferedReader; import java.io.FileInputSt ...

  10. [转]Oracle SOME,ANY,All,EXISTS,IN

    原文地址:http://blog.csdn.net/shangboerds/article/details/43983791 -- Start 这几个关键字有一个共同点,那就是它们一般应用于子查询中. ...