无符号k位数溢出就相当于mod 2k,然后设循环x次A等于B,就可以列出方程:

$$ Cx+A \equiv B \pmod {2^k} $$ $$ Cx \equiv B-A \pmod {2^k} $$

最后就用扩展欧几里得算法求出这个线性同余方程的最小非负整数解。

 #include<cstdio>
#include<cstring>
#define mod(x,y) (((x)%(y)+(y))%(y))
#define ll long long
ll exgcd(ll a,ll b,ll &x,ll &y){
if(b==){
x=; y=;
return a;
}
ll d=exgcd(b,a%b,x,y);
ll t=y;
y=x-a/b*y;
x=t;
return d;
}
ll MLES(ll a,ll b,ll n){
ll x,y;
ll d=exgcd(a,n,x,y);
if(b%d) return -;
return mod(x*(b/d),n/d);
}
int main(){
ll a,b,c,k;
while(~scanf("%lld%lld%lld%lld",&a,&b,&c,&k) && (a||b||c||k)){
k=1LL<<k;
ll res=MLES(c,b-a,k);
if(res==-) puts("FOREVER");
else printf("%lld\n",res);
}
return ;
}

POJ2115 C Looooops(线性同余方程)的更多相关文章

  1. poj2115-C Looooops -线性同余方程

    线性同余方程的模板题.和青蛙的约会一样. #include <cstdio> #include <cstring> #define LL long long using nam ...

  2. POJ-2115-C Looooops(线性同余方程)

    链接: https://vjudge.net/problem/POJ-2115 题意: A Compiler Mystery: We are given a C-language style for ...

  3. POJ2115:C Looooops(一元线性同余方程)

    题目: http://poj.org/problem?id=2115 要求: 会求最优解,会求这d个解,即(x+(i-1)*b/d)modm;(看最后那个博客的链接地址) 前两天用二元一次线性方程解过 ...

  4. POJ 2115 C Looooops (扩展欧几里德 + 线性同余方程)

    分析:这个题主要考察的是对线性同余方程的理解,根据题目中给出的a,b,c,d,不难的出这样的式子,(a+k*c) % (1<<d) = b; 题目要求我们在有解的情况下求出最小的解,我们转 ...

  5. POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))

    d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...

  6. 数论 - n元线性同余方程的解法

    note:n元线性同余方程因其编程的特殊性,一般在acm中用的很少,这里只是出于兴趣学了一下 n元线性同余方程的概念: 形如:(a1*x1+a2*x2+....+an*xn)%m=b%m       ...

  7. POJ1061 青蛙的约会(线性同余方程)

    线性同余方程$ ax \equiv b \pmod n$可以用扩展欧几里得算法求解. 这一题假设青蛙们跳t次后相遇,则可列方程: $$ Mt+X \equiv Nt+Y \pmod L$$ $$ (M ...

  8. poj2115 C Looooops(exgcd)

    poj2115 C Looooops 题意: 对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次才会结束. 若在有限次内结束,则输出循环次数. 否则输出死循环. ...

  9. 扩展欧几里得,解线性同余方程 逆元 poj1845

    定理:对于任意整数a,b存在一堆整数x,y,满足ax+by=gcd(a,b) int exgcd(int a,int b,int &x,int &y){ ){x=,y=;return ...

随机推荐

  1. HDU 2204 Eddy's爱好(容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2204 解题报告:输入一个n让你求出[1,n]范围内有多少个数可以表示成形如m^k的样子. 不详细说了, ...

  2. Unity3D研究院之Jenkins的使用(七十八)

    长夜漫漫无心睡眠,来一篇嘿嘿.我相信如果已经用Shell脚本完成IOS和Android打包的朋友一定需要Jenkins 怎么才能让策划打包ipa和apk?怎么才能彻底省去程序的时间,只要在同一局域网内 ...

  3. chm文件打开空白无内容的解决办法

    今天下载了个chm文件,但是打开空白,也没显示什么内容,经过一番研究之后终于可以正常显示了,下面把解决办法分享出来供大家参考下,谢谢.   工具/原料 windows7系统 chm文件 方法/步骤   ...

  4. bwa的使用方法

    bwa的使用需要两中输入文件:    Reference genome data(fasta格式 .fa, .fasta, .fna)    Short reads data (fastaq格式 .f ...

  5. ssh tar 命令把远程文件拉回来或推过去

    ssh tar 命令把远程文件拉回来或推过去 2010-09-11 21:55:35 分类: LINUX     登录22后tar 压缩/var/log目录输出到标准输入通过管道传到本地22_log. ...

  6. Windows命令行提取日期时间

    参考: http://elicecn.blog.163.com/blog/static/174017473200931910320556/ SET str="%date:~0,4%%date ...

  7. Eclipse 输入提示设置

    提升eclipse工具的效率是提升开发效率很重要的一个环节,然而java函数之多你不可能完全记住.eclipse默认打个“.”号后会有相应的提示,然而这略显笨拙.只需要对eclipse进行简单的配置便 ...

  8. oracle、mysql、sybase和sqlserver复制表结构和数据

    Sql Server(sybase): 1.复制表结构: 新建表student2,并且结构同表syn_xj_student一致.Sql语句如下: 2.复制表数据,并排除俩表中相同的数据: insert ...

  9. Greedy:Cleaning Shifts(POJ 2376)

      牛的大扫除 题目大意:农夫有N只牛,这些牛要帮助打扫农舍,这些牛只能打扫固定位置(千万要注意这个位置不是连续的),每一段区间必须至少有一只牛打扫,问你至少需要多少只牛?(如果区间不能完全被覆盖,则 ...

  10. jsp页面之间传参用el表达式获取

    jsp页面之间传参用el表达式获取 参数方法:${param.参数名} session方法:${session.变量名}