考虑两个质量均为m,速度分别v1、v2的小球发生完全弹性碰撞的影响:

由动能守恒得:

$\frac{1}{2}mv_1^2+\frac{1}{2}mv_2^2=\frac{1}{2}mv_1'^2+\frac{1}{2}mv_2'^2$
$v_1^2+v_2^2=v_1'^2+v_2'^2$

由动量守恒得:

$mv_1+mv_2=mv_1'+mv_2'$
$v_1+v_2=v_1'+v_2'$
$v_1^2+v_2^2+2v_1v_2=v_1'^2+v_2'^2+2v_1'v_2'$

所以

$v_1v_2=v_1'v_2'$
$v_1'=v_2$
$v_2'=v_1$

结论:两个质量相同的小球发生完全弹性碰撞后交换速度。

由于询问的是第k小的速率,并没有要求是哪个小球,所以可以视为小球并没有发生碰撞,而是直接按原速度穿过去,所以直接计算出每个小球在t时刻的速度就可以了。

现在考虑怎么求速度:

每一时刻加速度$av=C$

而加速度可以看做是速度函数的导数,

设$f(x)$为x时刻的速度,$f(0)=v$,$f(x)f'(x)=C$

解得

$f(x)=\sqrt{2Cx+v^2}$

因为在t时刻,影响最终速度排名的只有初速度v,所以只需要用数据结构维护v的顺序就可以了。

时间复杂度$O((n+q)\log n)$

#include<cstdio>
#include<cmath>
#define N 200010
using namespace std;
typedef long long ll;
const double A=0.8;
int n,c,x,y,z,size[N],son[N][2],val[N],f[N],tot,root,data[N],id[N],cnt;
int ins(int x,int p){
size[x]++;
int b=p>=val[x];
if(!son[x][b]){
son[x][b]=++tot;f[tot]=x;size[tot]=1;
val[tot]=p;
return tot;
}else return ins(son[x][b],p);
}
void dfs(int x){
if(son[x][0])dfs(son[x][0]);
data[++cnt]=val[x];id[cnt]=x;
if(son[x][1])dfs(son[x][1]);
}
int build(int fa,int l,int r){
int mid=(l+r)>>1,x=id[mid];
f[x]=fa;son[x][0]=son[x][1]=0;size[x]=1;
val[x]=data[mid];
if(l==r)return x;
if(l<mid)size[x]+=size[son[x][0]=build(x,l,mid-1)];
if(r>mid)size[x]+=size[son[x][1]=build(x,mid+1,r)];
return x;
}
inline int rebuild(int x){
cnt=0;dfs(x);return build(f[x],1,cnt);
}
inline void insert(int p){
if(!root){root=tot=size[1]=1;val[1]=p;return;}
int x=ins(root,p);
int deep=0;int z=x;while(f[z])z=f[z],deep++;
if(deep<log(tot)/log(1/A))return;
while((double)size[son[x][0]]<A*size[x]&&(double)size[son[x][1]]<A*size[x])x=f[x];
if(!x)return;
if(x==root){root=rebuild(x);return;}
int y=f[x],b=son[y][1]==x,now=rebuild(x);
son[y][b]=now;
}
inline int kth(int k){
int x=root,sum;
while(1){
sum=size[son[x][0]]+1;
if(k==sum)return val[x];
if(k<sum)x=son[x][0];else k-=sum,x=son[x][1];
}
}
inline void read(int&a){
char c;bool f=0;a=0;
while(!((((c=getchar())>='0')&&(c<='9'))||(c=='-')));
if(c!='-')a=c-'0';else f=1;
while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';
if(f)a=-a;
}
int main(){
read(n);read(c);
while(n--)read(x),read(y),read(z),insert(x);
read(n);
while(n--){
read(x);
if(x)read(y),read(z),z=kth(z),printf("%.3f\n",sqrt(2*(ll)c*(ll)y+(ll)z*(ll)z));
else read(x),read(y),read(y),insert(x);
}
return 0;
}

  

BZOJ3570 : DZY Loves Physics I的更多相关文章

  1. 【权值分块】bzoj3570 DZY Loves Physics I

    以下部分来自:http://www.cnblogs.com/zhuohan123/p/3726306.html 此证明有误. DZY系列. 这题首先是几个性质: 1.所有球质量相同,碰撞直接交换速度, ...

  2. CF 444C DZY Loves Physics(图论结论题)

    题目链接: 传送门 DZY Loves Chemistry time limit per test1 second     memory limit per test256 megabytes Des ...

  3. cf444A DZY Loves Physics

    A. DZY Loves Physics time limit per test 1 second memory limit per test 256 megabytes input standard ...

  4. Codeforces Round #254 (Div. 1) A. DZY Loves Physics 智力题

    A. DZY Loves Physics 题目连接: http://codeforces.com/contest/444/problem/A Description DZY loves Physics ...

  5. CodeForces 444C. DZY Loves Physics(枚举+水题)

    转载请注明出处:http://blog.csdn.net/u012860063/article/details/37509207 题目链接:http://codeforces.com/contest/ ...

  6. Codeforces 444A DZY Loves Physics(图论)

    题目链接:Codeforces 444A DZY Loves Physics 题目大意:给出一张图,图中的每一个节点,每条边都有一个权值.如今有从中挑出一张子图,要求子图联通,而且被选中的随意两点.假 ...

  7. 【Codeforces 444A】DZY Loves Physics

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 两个点的子图他们的"密度"是比所有联通生成子图都要大的 "只要胆子大,遇到什么问题都不怕!" [代码] ...

  8. CF444A DZY Loves Physics【结论】

    题目传送门 话说这道题不分析样例实在是太亏了...结论题啊... 但是话说回来不知道它是结论题的时候会不会想到猜结论呢...毕竟样例一.二都有些特殊. 观察样例发现选中的子图都只有一条边. 于是猜只有 ...

  9. @codeforces - 444A@ DZY Loves Physics

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 n 点 m 边的图,边有边权,点有点权. 找到一个连通 ...

随机推荐

  1. Maya导入Unity的教程

    原地址:http://www.cocoachina.com/gamedev/gameengine/2010/0601/1586.html 昨天已经发布了1Vr.Cn翻译的多维材质模型烘培入Unity  ...

  2. Opencv Cookbook阅读笔记(四):用直方图统计像素

    灰度直方图的定义 灰度直方图是灰度级的函数,描述图像中该灰度级的像素个数(或该灰度级像素出现的频率):其横坐标是灰度级,纵坐标表示图像中该灰度级出现的个数(频率). #include <open ...

  3. JS匿名函数的理解

    js匿名函数的代码如下:(function(){ // 这里忽略jQuery 所有实现 })(); 半年前初次接触jQuery 的时候,我也像其他人一样很兴奋地想看看源码是什么样的.然而,在看到源码的 ...

  4. SQL表值函数和标量值函数的区别

    SQL表值函数和标量值函数的区别 写sql存储过程经常需要调用一些函数来使处理过程更加合理,也可以使函数复用性更强,不过在写sql函数的时候可能会发现,有些函数是在表值函数下写的有些是在标量值下写的, ...

  5. powerdesigner奇淫技

    在日常开发中数据库的设计常常需要建立模型,而powerdesigner是个不错的选择.但很多时候用powerdesigner生成模型后再去创建表结构,会觉得烦和别扭.那么能不能数据库表建好后再生成模型 ...

  6. Linux下配置JDK

    下面以CentOS为例,详细说一下Linux下配置JDK的过程 首先按照约定俗成的习惯,将jdk放在/usr/local/java下,首先进入/usr/local然后新建一个目录java 然后我们需要 ...

  7. mybatisforeach循环,传入多个参数

    上代码: controller: @RequestMapping(value = "/findPage", method = RequestMethod.POST) @Respon ...

  8. Java 复制文件的高效方法

    转载自:http://jingyan.baidu.com/article/ff4116259c2d7712e4823780.html 在Java编程中,复制文件的方法有很多,而且经常要用到.我以前一直 ...

  9. [转]使用VC/MFC创建一个线程池

    许多应用程序创建的线程花费了大量时间在睡眠状态来等待事件的发生.还有一些线程进入睡眠状态后定期被唤醒以轮询工作方式来改变或者更新状态信息.线程池可以让你更有效地使用线程,它为你的应用程序提供一个由系统 ...

  10. SpringMVC详细示例实战

    一.SpringMVC基础入门,创建一个HelloWorld程序 1.首先,导入SpringMVC需要的jar包. 2.添加Web.xml配置文件中关于SpringMVC的配置 1 2 3 4 5 6 ...