Substrings 第37届ACM/ICPC 杭州赛区现场赛C题(hdu 4455)
http://acm.hdu.edu.cn/showproblem.php?pid=4455
题目大意就不多说了,官方的解法是dp,没太理解,自己想了一个直接点的方法,O(n)。
既然要计算所有贡献和,对于区间长度为k,假设集合中的元素全都相同,那么这个元素将会贡献给所有长度为k 的子区间。而事实上,所有元素不可能相同,因此就不可能贡献给所有长度为k 的子区间,那么思考,那些子区间是无法贡献的。假设集合中有序列 1......1,如果两个1的间隔为s,那么对于(k<s)的情况,总共有s-k+1个区间是没法贡献的。
而且,只要是任意的k<s,总存在区间是没法贡献的。对于一个k,
s1-k
#include<algorithm>
#include<iostream>
#include<fstream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<string>
#include<vector>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<ctime> using namespace std;
#define FOR(i,a,b) for(int i=a;i<b;i++)
#define FORD(i,a,b) for(int i=a;i>b;i--)
#define MST(a,num) memset(a,num,sizeof(a))
#define MCP(d,s) memcpy(d,s,sizeof(s))
#define WH(n) while(scanf("%d", &n) != EOF)
#define WHZ(n) while(scanf("%d", &n) != EOF && n != 0)
#define SCF(a) scanf("%d",&a)
#define PRF(a) printf("%d",a)
#define PRS(a) printf("%s",a)
#define PRFF(a) printf("%d\n",a)
#define PRSF(a) printf("%s\n",a)
#define PRFFU(a) printf("%I64d\n",a) #define PI acos(-1)
#define max3(a,b,c) max(max(a,b),c)
#define max4(a,b,c,d) max(max(a,b),max(c,d)) #define FORE(e,x) for(__typeof(x.begin()) e=x.begin(); e!=x.end(); e++) //foreach(it, ans ) cout<<*it<<" ";
#define all(a) (a).begin(),(a).end() //sort(all(v));
#define len(a) ((int)(a).size())
#define pb push_back
#define mk make_pair
#define V(etype) vector<etype> typedef __int64 Uint;
typedef vector<int> Vint;
typedef pair<int,int>mypair; #define INF 0x3f3f3f3f
#define eps 1e-9
#define N 1000000+10
int q[N];
int head[N];
int rt[N];
int cnt[N];
int num[N];
Uint sum[N];
int main()
{
int n,a,m; // freopen("data.in","r",stdin);
// freopen("data2.out","w",stdout);
while((cin>>n)&&n){
MST(cnt,0);
MST(sum,0);
MST(rt,-1);
MST(head,-1);
q[0]=0;
FOR(i,0,n){
SCF(num[i]);
if(head[num[i]]==-1)q[++q[0]]=num[i];
rt[i]=head[num[i]];
head[num[i]]=i;
}
FOR(i,1,q[0]+1){
rt[n]=head[q[i]];
for(int j=n;j!=-1;j=rt[j]){
cnt[j-rt[j]]--;
sum[j-rt[j]]-=j-rt[j];
cnt[0]++;
sum[0]+=j-rt[j];
}
}
FOR(i,1,n){
sum[i]+=sum[i-1],cnt[i]+=cnt[i-1];
//ret[i]=(n-i+1)*q[0]-(sum[i]-num[i]*cnt[i]);
}
Uint s1,s2;
SCF(m);
while(m--){
SCF(a);
if(!a)PRSF("0\n");
else{
s1=(n-a+1);
s1*=q[0];
s2=a;
s2*=cnt[a];
s2=sum[a]-s2;
PRFFU(s1-s2);
}
} }
return 0;
}
/*
7
1 1 2 3 4 4 5
3
1 2 3
7
1 1 2 3 4 4 5
4
1 2 3 0 */
Substrings 第37届ACM/ICPC 杭州赛区现场赛C题(hdu 4455)的更多相关文章
- hdu 4431 第37届ACM/ICPC 天津赛区现场赛A题 枚举
题意:就是给了13张牌.问增加哪些牌可以胡牌.m是数字,s是条,p是筒,c是数字 胡牌有以下几种情况: 1.一个对子 + 4组 3个相同的牌或者顺子. 只有m.s.p是可以构成顺子的.东西南北这样 ...
- hdu 4438 第37届ACM/ICPC 天津赛区现场赛H题
题意:Alice和Bob两个人去打猎,有两种(只)猎物老虎和狼: 杀死老虎得分x,狼得分y: 如果两个人都选择同样的猎物,则Alice得分的概率是p,则Bob得分的概率是(1-p): 但是Alice事 ...
- zoj 3659 第37届ACM/ICPC 长春赛区现场赛E题 (并查集)
题意:给出一棵树,找出一个点,求出所有点到这个点的权值和最大,权值为路径上所有边权的最小值. 用神奇的并查集,把路按照权值从大到小排序,然后用类似Kruskal的方法不断的加入边. 对于要加入的一条路 ...
- hdu 4461 第37届ACM/ICPC杭州赛区I题
题意:给两个人一些棋子,每个棋子有其对应的power,若b没有或者c没有,或者二者都没有,那么他的total power就会减1,total power最少是1,求最后谁能赢 如果b或c出现的话,fl ...
- hdu 4460 第37届ACM/ICPC杭州赛区H题 STL+bfs
题意:一些小伙伴之间有朋友关系,比如a和b是朋友,b和c是朋友,a和c不是朋友,则a和c之间存在朋友链,且大小为2,给出一些关系,求出这些关系中最大的链是多少? 求最短路的最大距离 #include& ...
- hdu 4462 第37届ACM/ICPC 杭州赛区 J题
题意:有一块n*n的田,田上有一些点可以放置稻草人,再给出一些稻草人,每个稻草人有其覆盖的距离ri,距离为曼哈顿距离,求要覆盖到所有的格子最少需要放置几个稻草人 由于稻草人数量很少,所以状态压缩枚举, ...
- hdu 4463 第37届ACM/ICPC杭州赛区K题 最小生成树
题意:给坐标系上的一些点,其中有两个点已经连了一条边,求最小生成树的值 将已连接的两点权值置为0,这样一定能加入最小生成树里 最后的结果加上这两点的距离即为所求 #include<cstdio& ...
- 2014 ACM/ICPC 鞍山赛区现场赛 D&I 解题报告
鞍山现场赛结束了呢-- 我们出的是D+E+I三道题-- 吾辈AC掉的是D和I两道,趁着还记得.先在这里写一写我写的两道水题D&I的解题报告吧^_^. D题的意思呢是说星云内有一堆排成一条直线的 ...
- zoj 3662 第37届ACM/ICPC长春赛区H题(DP)
题目:给出K个数,使得这K个数的和为N,LCM为M,问有多少种 f[i][j][k]表示选i个数,总和为j,最小公倍数为k memery卡的比较紧,注意不要开太大,按照题目数据开 这种类型的dp也是第 ...
随机推荐
- 为什么C语言在2013年仍然很重要:一个简单的例子
附注:在最初的文章里,我没说明进行模2^64的计算——我当然明白那些不是“正确的”斐波那契数列,其实我不是想分析大数,我只是想探寻编译器产生的代码和计算机体系结构而已. 最近,我一直在开发Dynvm— ...
- Java网络蜘蛛/网络爬虫 Spiderman
Spiderman - 又一个Java网络蜘蛛/爬虫 Spiderman 是一个基于微内核+插件式架构的网络蜘蛛,它的目标是通过简单的方法就能将复杂的目标网页信息抓取并解析为自己所需要的业务数据. 主 ...
- CCIE路由实验(2) -- BGP选路原则
BGP路径属性分为4类: 公认必遵(Well-Known Mandatory):BGP更新报文中必须包含的,且必须被所有BGP厂商实现所能识别的,包括ORIGIN,AS-PATH和Next_Hop 1 ...
- 花海漫步 NOI模拟题
题目好像难以看懂? 题目大意 给出一个字符串\(S\),统计满足以下条件的\((i,j,p,q)\)的数量. \(i \leq j, p \leq q\) \(S[i..j],S[p..q]\)是回文 ...
- 疯牛-- Aggressive cows (二分)
疯牛 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 农夫 John 建造了一座很长的畜栏,它包括N (2 <= N <= 100,000)个隔间,这些小 ...
- LeetCodeOJ. String to Integer (atoi)
试题请參见: https://oj.leetcode.com/problems/string-to-integer-atoi/ 题目概述 Implement atoi to convert a str ...
- 给刚通过51入门的新人讲讲S12(MCS12XS128)与51的差别
MCS51是keil也对应地做好了非常多,也就是有非常多对你而言是透明的,是你不必关心的,你所要接触的寄存器数量也非常小,在这个时候你很多其它是写函数,仅仅只是针对这个平台写C程序比在PC上写C控制台 ...
- 配置免安装版JAVA1.7的环境变量
我用的是免安装版JAVA1.7,假设想获取JDK能够联系问我要. 1.開始配置环境变量,右击[我的电脑]---[属性]-----[高级]---[环境变量],如图: 2.选择[新建系统变量]--弹出&q ...
- Oracle 11g RAC OCR 与 db_unique_name 配置关系 说明
一. 问题一 在做RAC standby 的alert log里发现如下错误: SUCCESS: diskgroup DATA was mounted ERROR: failed toestablis ...
- Cubieboard4卡片式电脑
Cubieboard4 also named CC-A80, is a open source mini PC or single board computer which has ultra-pow ...