期望概率DP简单题

从[1,1]点走到[r,c]点,每走一步的代价为2

给出每一个点走相邻位置的概率,共3中方向,不动: [x,y]->[x][y]=p[x][y][0] ,  右移:[x][y]->[x][y+1]=p[x][y][1];  左移:[x][y]->[x+1][y]=p[x][y][2];

问最后走到[r,c]的期望

dp[i][j]为从[i][j]点走到[r][c]的期望

有方程:

dp[i][j]=    (dp[i][j]+2)*p[i][j][0]  +   (dp[i][j+1]+2)*p[i][j][1]    +    (dp[i+1][j]+2)*p[i][j][2] ;

移项合并: dp[i][j]= (  (dp[i][j+1]+2)*p[i][j][1]    +    (dp[i+1][j]+2)*p[i][j][2]   +   p[i][j][0]*2  )  /  (1-p[i][j][0])

特判p[i][j][0]==1 的情况

#include "stdio.h"
#include "string.h"
#include "math.h"
double p[1010][1010][3],dp[1010][1010]; int main()
{
int n,m,i,j; while (scanf("%d%d",&n,&m)!=EOF)
{
for (i=1;i<=n;i++)
for (j=1;j<=m;j++)
scanf("%lf%lf%lf",&p[i][j][0],&p[i][j][1],&p[i][j][2]); memset(dp,0,sizeof(dp)); for (i=n;i>=1;i--)
for (j=m;j>=1;j--)
{
dp[i][j]=(dp[i][j+1]+2)*p[i][j][1]+(dp[i+1][j]+2)*(p[i][j][2])+p[i][j][0]*2;
if (fabs(p[i][j][0]-1)<=0.00000000001) dp[i][j]=0;
else dp[i][j]/=(1-p[i][j][0]);
}
printf("%.3lf\n",dp[1][1]);
}
return 0;
}

HDU 3853 期望概率DP的更多相关文章

  1. hdu 3853 LOOPS 概率DP

    简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...

  2. HDU 3853 LOOPS 概率DP入门

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Total Sub ...

  3. HDU 3853 LOOP (概率DP求期望)

    D - LOOPS Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit St ...

  4. hdu 3853 LOOPS (概率dp 逆推求期望)

    题目链接 LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Tota ...

  5. LOOPS HDU - 3853 (概率dp):(希望通过该文章梳理自己的式子推导)

    题意:就是让你从(1,1)走到(r, c)而且每走一格要花2的能量,有三种走法:1,停住.2,向下走一格.3,向右走一格.问在一个网格中所花的期望值. 首先:先把推导动态规划的基本步骤给出来. · 1 ...

  6. 【BZOJ 3652】大新闻 数位dp+期望概率dp

    并不难,只是和期望概率dp结合了一下.稍作推断就可以发现加密与不加密是两个互相独立的问题,这个时候我们分开算就好了.对于加密,我们按位统计和就好了;对于不加密,我们先假设所有数都找到了他能找到的最好的 ...

  7. 【BZOJ 3811】玛里苟斯 大力观察+期望概率dp+线性基

    大力观察:I.从输出精准位数的约束来观察,一定会有猫腻,然后仔细想一想,就会发现输出的时候小数点后面不是.5就是没有 II.从最后答案小于2^63可以看出当k大于等于3的时候就可以直接搜索了 期望概率 ...

  8. 【NOIP模拟赛】黑红树 期望概率dp

    这是一道比较水的期望概率dp但是考场想歪了.......我们可以发现奇数一定是不能掉下来的,因为若奇数掉下来那么上一次偶数一定不会好好待着,那么我们考虑,一个点掉下来一定是有h/2-1个红(黑),h/ ...

  9. BZOJ1415: [Noi2005]聪聪和可可 最短路 期望概率dp

    首先这道题让我回忆了一下最短路算法,所以我在此做一个总结: 带权: Floyed:O(n3) SPFA:O(n+m),这是平均复杂度实际上为O(玄学) Dijkstra:O(n+2m),堆优化以后 因 ...

随机推荐

  1. java socket线程通信

    关于socket线程通信的一些知识整理 一般我们需要要让两台机子进行通信,需要创建一个Server 类,一个Client类,还需要创建一个线程类 server public class Server ...

  2. InheritableThreadLocal

    InheritableThreadLocal继承自ThreadLocal,但比ThreadLocal多一个特性: 子线程可以继承父亲线程上下文中的信息 但是,有两个点需要注意的: 只有子线程创建之前的 ...

  3. 网页制作之JavaScript部分 2 - DOM操作

    1.DOM的基本概念  htmlDOM是一种面向对象的树的模型,它包含html中的所有元素:通过html可以找到所有包含在dom中的元素. DOM是文档对象模型,这种模型为树模型:文档是指标签文档:对 ...

  4. hdu 4614 Vases and Flowers (二分 线段树)

    题目大意:爱丽丝有N个花瓶,每个花瓶最多放一朵花.然后又如下两个操作. 1:A B    从第A个花瓶开始,往后依次插B朵花,直到不能插为止.如果一朵花都不能插入就输出“can.....”,否则输出第 ...

  5. C++中实现 time_t, tm 相互转换

    time_t -> tm: localtime tm -> time_t: mktime time_t curTime; time(&curTime); dwCurTime = c ...

  6. UVa 11045 My T-shirt suits me / 二分图

    二分图建图 判断是否是完全匹配就行 最大流也行 #include <cstdio> #include <cstring> const int MAX = 300; int a[ ...

  7. Nodejs 项目开发

    最近这几个月都在学习nodejs. 国内nodejs的资料相对较少,就我所搜索到的,CSDN目前的代码托管平台有不少从github弄过来的开源镜像,其它的不错的社区有cnodejs,byvoid的个人 ...

  8. C++中vector的实现

     注意几点: 分配内存不要使用new和delete,由于new的同一时候就把对象构造了.而我们须要的是原始内存. 所以应该使用标准库提供的allocator类来实现内存的控制.当然也能够重载ope ...

  9. 从M个数中随机选出N个数的所有组合,有序,(二)

    这就是数学中的 A m n 的选取. 共有   m!/n!种可能.. 同样举一个例子吧.. 从12345这五个数字中随机选取3个数字,要求选出来的这三个数字是有序,也就是说从12345中选出来的是12 ...

  10. 写程序取自己进程的AEP

    测试程序功能 打印出自己进程的程序入口点地址. 结合OD载入程序,看到的入口点确实是0x004014f0, 说明程序入口点找到了 测试程序 /// @file exam_1_1.c #include  ...